682 citations to 10.1063/1.166272 (Crossref Cited-By Service)
  1. Gérard Ben Arous, Jiří Černý, “Scaling limit for trap models on ℤd”, Ann. Probab., 35, no. 6, 2007  crossref
  2. Guoxing Lin, “Describe NMR relaxation by anomalous rotational or translational diffusion”, Communications in Nonlinear Science and Numerical Simulation, 72, 2019, 232  crossref
  3. Athokpam Langlen Chanu, Jyoti Bhadana, R. K. Brojen Singh, “Non-Markovian process with variable memory functions”, Ricerche mat, 72, no. 2, 2023, 835  crossref
  4. Yuri Luchko, “On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation”, Mathematics, 5, no. 4, 2017, 76  crossref
  5. Han Che, Yu-Lan Wang, Zhi-Yuan Li, “Novel patterns in a class of fractional reaction–diffusion models with the Riesz fractional derivative”, Mathematics and Computers in Simulation, 202, 2022, 149  crossref
  6. Li Li, “A Fractional Parabolic Inverse Problem Involving a Time-dependent Magnetic Potential”, SIAM J. Math. Anal., 53, no. 1, 2021, 435  crossref
  7. P.P. Valkó, X.H. Zhang, “Finite domain anomalous spreading consistent with first and second laws”, Communications in Nonlinear Science and Numerical Simulation, 15, no. 11, 2010, 3455  crossref
  8. Dexter Cahoy, Elvira Di Nardo, Federico Polito, “Flexible models for overdispersed and underdispersed count data”, Stat Papers, 62, no. 6, 2021, 2969  crossref
  9. R. Sánchez, B. A. Carreras, B. Ph. van Milligen, “Fluid limit of nonintegrable continuous-time random walks in terms of fractional differential equations”, Phys. Rev. E, 71, no. 1, 2005, 011111  crossref
  10. Ralf Metzler, Jae-Hyung Jeon, Andrey G. Cherstvy, Eli Barkai, “Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking”, Phys. Chem. Chem. Phys., 16, no. 44, 2014, 24128  crossref
Previous
1
3
4
5
6
7
8
9
69
Next