- Mark M. Meerschaert, Hans-Peter Scheffler, “Limit theorems for continuous-time random walks with infinite mean waiting times”, J. Appl. Probab., 41, no. 03, 2004, 623
- T. Pierantozzi, L. Vázquez, “An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like”, Journal of Mathematical Physics, 46, no. 11, 2005, 113512
- Olga Sheremetyeva, Boris Shevtsov, “Fractional Model of the Deformation Process”, Fractal Fract, 6, no. 7, 2022, 372
- Ralf Metzler, Joseph Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics Reports, 339, no. 1, 2000, 1
- Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, Sergei V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, 2014, 201
- Mehar Chand, Zakia Hammouch, Joshua Kiddy K. Asamoah, Dumitru Baleanu, 24, Mathematical Methods in Engineering, 2019, 213
- M. Hosseininia, M.H. Heydari, “Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel”, Chaos, Solitons & Fractals, 127, 2019, 400
- Alberto S. Ndumu, Paul S. Addison, “Scale-Dependent Subsurface Dispersion: A Fractal-Based Stochastic Model”, J. Hydrol. Eng., 6, no. 1, 2001, 34
- Francesco MAINARDI, Antonio MURA, Gianni PAGNINI, Rudolf GORENFLO, “FRACTIONAL RELAXATION AND TIME-FRACTIONAL DIFFUSION OF DISTRIBUTED ORDER”, IFAC Proceedings Volumes, 39, no. 11, 2006, 1
- Liang Luo, Lei-Han Tang, “Sub-diffusive scaling with power-law trapping times”, Chinese Phys. B, 23, no. 7, 2014, 070514