682 citations to 10.1063/1.166272 (Crossref Cited-By Service)
  1. Василий Никитич Колокольцов, Vassili Nikitich Kolokoltsov, “Обобщенные случайные блуждания в непрерывном времени (CTRW), субординация временами достижения и дробная динамика”, ТВП, 53, no. 4, 2008, 684  crossref
  2. Dirk Brockmann, Anomalous Transport, 2008, 459  crossref
  3. A. V. Chechkin, V. Yu. Gonchar, “Linear relaxation processes governed by fractional symmetric kinetic equations”, J. Exp. Theor. Phys., 91, no. 3, 2000, 635  crossref
  4. Wanli Wang, Eli Barkai, “Fractional Advection-Diffusion-Asymmetry Equation”, Phys. Rev. Lett., 125, no. 24, 2020, 240606  crossref
  5. Marziyeh Saffarian, Akbar Mohebbi, “Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection–dispersion equations”, Mathematics and Computers in Simulation, 193, 2022, 348  crossref
  6. F. San José Martínez, Y. A. Pachepsky, W. J. Rawls, “Advective–Dispersive Equation with Spatial Fractional Derivatives Evaluated with Tracer Transport Data”, Vadose Zone Journal, 8, no. 1, 2009, 242  crossref
  7. Boris Baeumer, Markus Haase, Mihály Kovács, “Unbounded functional calculus for bounded groups with applications”, J. Evol. Equ., 9, no. 1, 2009, 171  crossref
  8. Reem Abdullah Aljethi, Adem Kılıçman, “Derivation of the Fractional Fokker–Planck Equation for Stable Lévy with Financial Applications”, Mathematics, 11, no. 5, 2023, 1102  crossref
  9. Haitao Qi, Xiaoyun Jiang, “Solutions of the space-time fractional Cattaneo diffusion equation”, Physica A: Statistical Mechanics and its Applications, 390, no. 11, 2011, 1876  crossref
  10. Ralf Metzler, Theo F. Nonnenmacher, “Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation”, Chemical Physics, 284, no. 1-2, 2002, 67  crossref
Previous
1
11
12
13
14
15
16
17
69
Next