- Василий Никитич Колокольцов, Vassili Nikitich Kolokoltsov, “Обобщенные случайные блуждания в непрерывном времени (CTRW), субординация временами достижения и дробная динамика”, ТВП, 53, no. 4, 2008, 684
- Dirk Brockmann, Anomalous Transport, 2008, 459
- A. V. Chechkin, V. Yu. Gonchar, “Linear relaxation processes governed by fractional symmetric kinetic equations”, J. Exp. Theor. Phys., 91, no. 3, 2000, 635
- Wanli Wang, Eli Barkai, “Fractional Advection-Diffusion-Asymmetry Equation”, Phys. Rev. Lett., 125, no. 24, 2020, 240606
- Marziyeh Saffarian, Akbar Mohebbi, “Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection–dispersion equations”, Mathematics and Computers in Simulation, 193, 2022, 348
- F. San José Martínez, Y. A. Pachepsky, W. J. Rawls, “Advective–Dispersive Equation with Spatial Fractional Derivatives Evaluated with Tracer Transport Data”, Vadose Zone Journal, 8, no. 1, 2009, 242
- Boris Baeumer, Markus Haase, Mihály Kovács, “Unbounded functional calculus for bounded groups with applications”, J. Evol. Equ., 9, no. 1, 2009, 171
- Reem Abdullah Aljethi, Adem Kılıçman, “Derivation of the Fractional Fokker–Planck Equation for Stable Lévy with Financial Applications”, Mathematics, 11, no. 5, 2023, 1102
- Haitao Qi, Xiaoyun Jiang, “Solutions of the space-time fractional Cattaneo diffusion equation”, Physica A: Statistical Mechanics and its Applications, 390, no. 11, 2011, 1876
- Ralf Metzler, Theo F. Nonnenmacher, “Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation”, Chemical Physics, 284, no. 1-2, 2002, 67