- A. F. Ber, V. I. Chilin, F. A. Sukochev, “Continuous derivations on algebras of locally measurable operators are inner”, Proceedings of the London Mathematical Society, 109, no. 1, 2014, 65
- Sergio Albeverio, Shavkat A. Ayupov, Karimbergen K. Kudaybergenov, “Derivations on the Algebra of τ-Compact Operators Affiliated with a Type I von Neumann Algebra”, Positivity, 12, no. 2, 2008, 375
- Shavkat Ayupov, Jinghao Huang, Karimbergen Kudaybergenov, “Schur inequality for Murray–von Neumann algebras and its applications”, Ann. Funct. Anal., 15, no. 3, 2024, 47
- Sh. Ayupov, K. Kudaybergenov, “Ring Isomorphisms of $\ast$-Subalgebras of Murray–von Neumann Factors”, Lobachevskii J Math, 42, no. 12, 2021, 2730
- S. ALBEVERIO, SH. A. AYUPOV, K. K. KUDAYBERGENOV, B. O. NURJANOV, “LOCAL DERIVATIONS ON ALGEBRAS OF MEASURABLE OPERATORS”, Commun. Contemp. Math., 13, no. 04, 2011, 643
- S. Albeverio, Sh.A. Ayupov, K.K. Kudaybergenov, “Structure of derivations on various algebras of measurable operators for type I von Neumann algebras”, Journal of Functional Analysis, 256, no. 9, 2009, 2917
- Sh. A. Ayupov, K. K. Kudaybergenov, “Innerness of derivations on subalgebras of measurable operators”, Lobachevskii J Math, 29, no. 2, 2008, 60
- SH. A. AYUPOV, K. K. KUDAYBERGENOV, “DERIVATIONS ON ALGEBRAS OF MEASURABLE OPERATORS”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 13, no. 02, 2010, 305
- Farrukh Mukhamedov, Karimbergen Kudaybergenov, “Local Derivations on Subalgebras of τ-Measurable Operators with Respect to Semi-finite von Neumann Algebras”, Mediterr. J. Math., 12, no. 3, 2015, 1009
- M. WEIGT, I. ZARAKAS, “DERIVATIONS OF FRÉCHET NUCLEAR GB-ALGEBRAS”, Bull. Aust. Math. Soc., 92, no. 2, 2015, 290