- G. L. Wagner, W. R. Young, “A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic”, J. Fluid Mech., 802, 2016, 806

- Hailiang Liu, Eitan Tadmor, “Rotation prevents finite-time breakdown”, Physica D: Nonlinear Phenomena, 188, no. 3-4, 2004, 262

- Eric Danioux, Jacques Vanneste, Oliver Bühler, “On the concentration of near-inertial waves in anticyclones”, J. Fluid Mech., 773, 2015, R2

- Md. Khurshed Alam, A. Roy Chowdhury, “Effect of Non-Thermal Electrons on the Interaction of Drift Wave and Electrostatic Ion-Cyclotron Wave and Modulation Instability”, J. Phys. Soc. Jpn., 68, no. 4, 1999, 1216

- G.M. Reznik, V. Zeitlin, 2, Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances, 2007, 47

- O. A. Pokhotelov, L. Stenflo, P. K. Shukla, “Nonlinear interaction of electrostatic ion-cyclotron and drift waves in plasmas”, J. Plasma Phys., 56, no. 1, 1996, 187

- J.-H. Xie, J. Vanneste, “A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow”, J. Fluid Mech., 774, 2015, 143

- T D Kaladze, O A Pokhotelov, L Stenflo, H A Shah, G V Jandieri, “Electromagnetic inertio-gravity waves in the ionosphericE-layer”, Phys. Scr., 76, no. 4, 2007, 343

- T.D. Kaladze, L.V. Tsamalashvili, L.Z. Kahlon, “Electromagnetic inertio-gravity waves in the Earth's ionosphere”, Journal of Atmospheric and Solar-Terrestrial Physics, 73, no. 7-8, 2011, 741

- Serguei B. Medvedev, “Poincar normal forms for partial differential equations”, Proc. R. Soc. Lond. A, 455, no. 1991, 1999, 4061
