22 citations to 10.5802/crmath.80 (Crossref Cited-By Service)
  1. Molla Basir Ahamed, “The Bohr–Rogosinski Radius for a Certain Class of Close-to-Convex Harmonic Mappings”, Comput. Methods Funct. Theory, 2022  crossref
  2. Shankey Kumar, Swadesh Kumar Sahoo, “Bohr Inequalities for Certain Integral Operators”, Mediterr. J. Math., 18, no. 6, 2021, 268  crossref
  3. Vasudevarao Allu, Himadri Halder, Subhadip Pal, “Bohr and Rogosinski inequalities for operator valued holomorphic functions”, Bulletin des Sciences Mathématiques, 182, 2023, 103214  crossref
  4. Vasudevarao Allu, Himadri Halder, “Bohr Phenomenon for Certain Close-to-Convex Analytic Functions”, Comput. Methods Funct. Theory, 22, no. 3, 2022, 491  crossref
  5. Molla Basir Ahamed, Vasudevarao Allu, Himadri Halder, “Improved Bohr inequalities for certain class of harmonic univalent functions”, Complex Variables and Elliptic Equations, 68, no. 2, 2023, 267  crossref
  6. Molla Basir Ahamed, Vasudevarao Allu, “Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings”, Can. Math. Bull., 66, no. 3, 2023, 1014  crossref
  7. S. Kumar, S. K. Sahoo, “A Generalization of the Bohr–Rogosinski Sum”, Lobachevskii J Math, 43, no. 8, 2022, 2176  crossref
  8. D. M. Khammatova, “Refinement of Powered Bohr Inequality”, Lobachevskii J Math, 43, no. 10, 2022, 2954  crossref
  9. Gang Liu, Saminathan Ponnusamy, “Improved Bohr inequality for harmonic mappings”, Mathematische Nachrichten, 296, no. 2, 2023, 716  crossref
  10. Vasudevarao Allu, Nirupam Ghosh, “Bohr type inequality for Cesáro and Bernardi integral operator on simply connected domain”, Proc Math Sci, 133, no. 2, 2023, 22  crossref
Previous
1
2
3
Next