- Attilio Maccari, “Chaotic, fractal, and coherent solutions for a new integrable system of equations in 2+1 dimensions”, Journal of Mathematical Physics, 49, no. 2, 2008, 022702
- Hang-yu Ruan, Yi-xin Chen, “Interaction of Solitons in (2+1)-Dimensional Integrable Models”, Phys. Scr., 66, no. 3, 2002, 254
- Zheng Chun-Long, Zhang Jie-Fang, “General Solution and Fractal Localized Structures for the (2+1)-Dimensional Generalized Ablowitz-Kaup-Newell-Segur System”, Chinese Phys. Lett., 19, no. 10, 2002, 1399
- Hang-yu Ruan, Yi-xin Chen, “Restudy of the structures and interactions of the soliton in the asymmetric Nizhnik–Novikov–Veselov equation”, J. Phys. A: Math. Gen., 37, no. 7, 2004, 2709
- Han-Peng Chai, Bo Tian, Hui-Ling Zhen, Jun Chai, Yue-Yang Guan, “Analysis of the generalized (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients in an inhomogeneous medium”, Mod. Phys. Lett. B, 31, no. 22, 2017, 1750135
- Xiao-Rui Hu, Yong Chen, “Binary Bell Polynomials Approach to Generalized Nizhnik—Novikov—Veselov Equation”, Commun. Theor. Phys., 56, no. 2, 2011, 218
- Julia Nickel, V. S. Serov, H. W. Schurmann, “SOME ELLIPTIC TRAVELING WAVE SOLUTIONS TO THE NOVIKOV-VESELOV EQUATION”, PIER, 61, 2006, 323
- Xing-Biao Hu, “Nonlinear superposition formula of the Novikov-Veselov equation”, J. Phys. A: Math. Gen., 27, no. 4, 1994, 1331
- Yukiko Tagami, “Soliton-like solutions to a (2+1)-dimensional generalization of the KdV equation”, Physics Letters A, 141, no. 3-4, 1989, 116
- Jingfeng Quan, Xiaoyan Tang, “New variable separation solutions and localized waves for (2+1)-dimensional nonlinear systems by a full variable separation approach”, Phys. Scr., 98, no. 12, 2023, 125269