105 citations to 10.1016/0167-2789(86)90187-9 (Crossref Cited-By Service)
  1. Attilio Maccari, “Chaotic, fractal, and coherent solutions for a new integrable system of equations in 2+1 dimensions”, Journal of Mathematical Physics, 49, no. 2, 2008, 022702  crossref
  2. Hang-yu Ruan, Yi-xin Chen, “Interaction of Solitons in (2+1)-Dimensional Integrable Models”, Phys. Scr., 66, no. 3, 2002, 254  crossref
  3. Zheng Chun-Long, Zhang Jie-Fang, “General Solution and Fractal Localized Structures for the (2+1)-Dimensional Generalized Ablowitz-Kaup-Newell-Segur System”, Chinese Phys. Lett., 19, no. 10, 2002, 1399  crossref
  4. Hang-yu Ruan, Yi-xin Chen, “Restudy of the structures and interactions of the soliton in the asymmetric Nizhnik–Novikov–Veselov equation”, J. Phys. A: Math. Gen., 37, no. 7, 2004, 2709  crossref
  5. Han-Peng Chai, Bo Tian, Hui-Ling Zhen, Jun Chai, Yue-Yang Guan, “Analysis of the generalized (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients in an inhomogeneous medium”, Mod. Phys. Lett. B, 31, no. 22, 2017, 1750135  crossref
  6. Xiao-Rui Hu, Yong Chen, “Binary Bell Polynomials Approach to Generalized Nizhnik—Novikov—Veselov Equation”, Commun. Theor. Phys., 56, no. 2, 2011, 218  crossref
  7. Julia Nickel, V. S. Serov, H. W. Schurmann, “SOME ELLIPTIC TRAVELING WAVE SOLUTIONS TO THE NOVIKOV-VESELOV EQUATION”, PIER, 61, 2006, 323  crossref
  8. Xing-Biao Hu, “Nonlinear superposition formula of the Novikov-Veselov equation”, J. Phys. A: Math. Gen., 27, no. 4, 1994, 1331  crossref
  9. Yukiko Tagami, “Soliton-like solutions to a (2+1)-dimensional generalization of the KdV equation”, Physics Letters A, 141, no. 3-4, 1989, 116  crossref
  10. Jingfeng Quan, Xiaoyan Tang, “New variable separation solutions and localized waves for (2+1)-dimensional nonlinear systems by a full variable separation approach”, Phys. Scr., 98, no. 12, 2023, 125269  crossref
Previous
1
2
3
4
5
11
Next