- P. Bettiol, B. Bonnard, A. Nolot, J. Rouot, “Sub-Riemannian geometry and swimming at low Reynolds number: the Copepod case”, ESAIM: COCV, 25, 2019, 9
- Arnold's Problems, 2005, 181
- Tommaso Rossi, “Integrability of the sub-Riemannian mean curvature at degenerate characteristic points in the Heisenberg group”, Advances in Calculus of Variations, 16, no. 1, 2023, 99
- U. Boscain, T. Chambrion, 1, Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 2002, 34
- Fazia Harrache, Francesca C. Chittaro, Mohamed Aidéne, “Local $L^1$ sub-Finsler geometry in dimension 3: non-generic cases”, J Dyn Control Syst, 29, no. 4, 2023, 1867
- Bernard Bonnard, Monique Chyba, Jéremy Rouot, Daisuke Takagi, “Sub-Riemannian geometry, Hamiltonian dynamics, micro-swimmers, copepod nauplii and copepod robot”, Pac. J. Math. Ind., 10, no. 1, 2018, 2
- Andrei Agrachev, Davide Barilari, Ugo Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, 2019
- Ugo Boscain, Grégoire Charlot, Jean-Paul Gauthier, 281, Nonlinear and Adaptive Control, 2003, 33
- Jianghai Hu, S.N. Simic, S. Sastry, 3, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), 2003, 2908
- D. Barilari, “Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry”, J Math Sci, 195, no. 3, 2013, 391