- Haitao Liu, Shengli Xu, Ying Ma, Xiaofang Wang, “Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces”, J Glob Optim, 63, no. 2, 2015, 229
- Yaroslav D. Sergeyev, Dmitri E. Kvasov, Wiley Encyclopedia of Operations Research and Management Science, 2011
- Roman Strongin, Konstantin Barkalov, Semen Bevzuk, “Global optimization method with dual Lipschitz constant estimates for problems with non-convex constraints”, Soft Comput, 24, no. 16, 2020, 11853
- Victor Gergel, Vladimir Grishagin, Ruslan Israfilov, 11657, Parallel Computing Technologies, 2019, 166
- Remigijus Paulavičius, Yaroslav D. Sergeyev, Dmitri E. Kvasov, Julius Žilinskas, “Globally-biased BIRECT algorithm with local accelerators for expensive global optimization”, Expert Systems with Applications, 144, 2020, 113052
- Yaroslav D. Sergeyev, Dmitri E. Kvasov, “Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants”, SIAM J. Optim., 16, no. 3, 2006, 910
- Abdullah Al-Dujaili, S. Suresh, N. Sundararajan, “MSO: a framework for bound-constrained black-box global optimization algorithms”, J Glob Optim, 66, no. 4, 2016, 811
- Remigijus Paulavičius, Lakhdar Chiter, Julius Žilinskas, “Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants”, J Glob Optim, 71, no. 1, 2018, 5
- Yaroslav D. Sergeyev, Dmitri E. Kvasov, Marat S. Mukhametzhanov, 1738, 2016, 400004
- Linas Stripinis, Remigijus Paulavičius, Julius Žilinskas, “Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT”, Optim Lett, 12, no. 7, 2018, 1699