26 citations to 10.1007/s10114-005-0652-z (Crossref Cited-By Service)
  1. Ivan I. Argatov, “Asymptotic models for the topological sensitivity of the energy functional”, Applied Mathematics Letters, 22, no. 1, 2009, 19  crossref
  2. Antonio André Novotny, Jan Sokołowski, Antoni Żochowski, “Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains”, J Optim Theory Appl, 180, no. 2, 2019, 341  crossref
  3. Ahmed Alsaedi, Bashir Ahmad, Durga Prasad Challa, Mokhtar Kirane, Mourad Sini, “A cluster of many small holes with negative imaginary surface impedances may generate a negative refraction index”, Math Methods in App Sciences, 39, no. 13, 2016, 3607  crossref
  4. Maxence Cassier, Christophe Hazard, “Multiple scattering of acoustic waves by small sound-soft obstacles in two dimensions: Mathematical justification of the Foldy–Lax model”, Wave Motion, 50, no. 1, 2013, 18  crossref
  5. G. Cardone, S. A. Nazarov, J. Sokolowski, “Asymptotic Analysis, Polarization Matrices, and Topological Derivatives for Piezoelectric Materials with Small Voids”, SIAM J. Control Optim., 48, no. 6, 2010, 3925  crossref
  6. Adam Kowalewski, Irena Lasiecka, Jan Sokołowski, “Sensitivity analysis of hyperbolic optimal control problems”, Comput Optim Appl, 52, no. 1, 2012, 147  crossref
  7. Alfredo Canelas, Antonio A. Novotny, Jean R. Roche, “A new method for inverse electromagnetic casting problems based on the topological derivative”, Journal of Computational Physics, 230, no. 9, 2011, 3570  crossref
  8. S. M. Giusti, A. A. Novotny, J. Sokołowski, “Topological derivative for steady-state orthotropic heat diffusion problem”, Struct Multidisc Optim, 40, no. 1-6, 2010, 53  crossref
  9. Mohamed Iguernane, Serguei Nazarov, Jean-Rodolphe Roche, Jan Sokolowski, Katarzyna Szulc, “Topological Derivatives for Semilinear Elliptic Equations”, International Journal of Applied Mathematics and Computer Science, 19, no. 2, 2009, 191  crossref
  10. Lucas Chesnel, Xavier Claeys, “A numerical approach for the Poisson equation in a planar domain with a small inclusion”, Bit Numer Math, 56, no. 4, 2016, 1237  crossref
1
2
3
Next