- G. Falqui, I. Mencattini, G. Ortenzi, M. Pedroni, “Poisson Quasi-Nijenhuis Manifolds and the Toda System”, Math Phys Anal Geom, 23, no. 3, 2020, 26
- A.P. Reynolds, O.I. Bogoyavlenskij, “Lie algebra structures for four-component Hamiltonian hydrodynamic type systems”, Journal of Geometry and Physics, 61, no. 12, 2011, 2400
- O. I. Bogoyavlenskij, “Courant problem on the decoupling of the systems of quasi-linear partial differential equations”, Phys. Atom. Nuclei, 71, no. 5, 2008, 824
- Oleg I. Bogoyavlenskij, “Block-diagonalizability problem for hydrodynamic type systems”, Journal of Mathematical Physics, 47, no. 6, 2006, 063502
- Олег Игоревич Богоявленский, Oleg Igorevich Bogoyavlenskii, Олег Игоревич Богоявленский, Oleg Igorevich Bogoyavlenskii, “Общие алгебраические тождества для тензоров Нийенхейса и Хаантжеса”, Изв. РАН. Сер. матем., 68, no. 6, 2004, 71
- Daniel Reyes Nozaleda, Piergiulio Tempesta, Giorgio Tondo, “Classical multiseparable Hamiltonian systems, superintegrability and Haantjes geometry”, Communications in Nonlinear Science and Numerical Simulation, 104, 2022, 106021
- Oleg I. Bogoyavlenskij, “Algebraic identities for the Nijenhuis tensors”, Differential Geometry and its Applications, 24, no. 5, 2006, 447
- O. I. Bogoyavlenskij, A. P. Reynolds, “Criteria for existence of a Hamiltonian structure”, Regul. Chaot. Dyn., 15, no. 4-5, 2010, 431
- Oleg I. Bogoyavlenskij, “Invariant foliations for the Poisson brackets of hydrodynamic type”, Physics Letters A, 360, no. 4-5, 2007, 539
- Oleg I. Bogoyavlenskij, “Schouten tensor and bi-Hamiltonian systems of hydrodynamic type”, Journal of Mathematical Physics, 47, no. 2, 2006, 023504