- Ana Ramos Oliveira, Tiago Brito Ramos, Ramiro Neves, “Streamflow Estimation in a Mediterranean Watershed Using Neural Network Models: A Detailed Description of the Implementation and Optimization”, Water, 15, no. 5, 2023, 947
- Shan Jiang, Zu-Guo Yu, Vo V. Anh, Taesam Lee, Yu Zhou, “An ensemble multi-scale framework for long-term forecasting of air quality”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34, no. 1, 2024, 013110
- Rui Gonçalves, Vitor Miguel Ribeiro, “Convolutional attention with roll padding: Classifying PM2.5 concentration levels in the city of Beijing”, Energy, 289, 2024, 130045
- I Nyoman Kusuma Wardana, Julian W. Gardner, Suhaib A. Fahmy, “Optimising Deep Learning at the Edge for Accurate Hourly Air Quality Prediction”, Sensors, 21, no. 4, 2021, 1064
- Y. He, D. Qi, V. M. Bure, “Long-Term Air Quality Evaluation System Prediction In China Based On Multinomial Logistic Regression Method”, GES, 16, no. 4, 2024, 164
- Jason Runge, Radu Zmeureanu, “A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings”, Energies, 14, no. 3, 2021, 608
- Hyesook Son, Seokyeon Kim, Hanbyul Yeon, Yejin Kim, Yun Jang, Seung-Eock Kim, “Visual Analysis of Spatiotemporal Data Predictions with Deep Learning Models”, Applied Sciences, 11, no. 13, 2021, 5853
- D. N. T. How, M A Hannan, M. S. Hossain Lipu, P. J. Ker, M. Mansor, K. S. M. Sahari, K. M. Muttaqi, 2021 IEEE Industry Applications Society Annual Meeting (IAS), 2021, 1
- Yuchen Wang, Zhengshan Luo, Jihao Luo, “Research on predicting the diffusion of toxic heavy gas sulfur dioxide by applying a hybrid deep learning model to real case data”, Science of The Total Environment, 901, 2023, 166506
- Hao Zhou, Tao Wang, Hongchao Zhao, Zicheng Wang, “Updated Prediction of Air Quality Based on Kalman-Attention-LSTM Network”, Sustainability, 15, no. 1, 2022, 356