215 citations to 10.1109/ACCESS.2019.2921578 (Crossref Cited-By Service)
  1. K.Krishna Rani Samal Samal, Korra Sathya Babu, Santos Kumar Das, “Spatial-temporal prediction of air quality by deep learning and kriging interpolation approach”, ICST Transactions on Scalable Information Systems, 2023  crossref
  2. Jing Tan, Hui Liu, Yanfei Li, Shi Yin, Chengqing Yu, “A new ensemble spatio-temporal PM2.5 prediction method based on graph attention recursive networks and reinforcement learning”, Chaos, Solitons & Fractals, 162, 2022, 112405  crossref
  3. Enislay Ramentol, Stefanie Grimm, Moritz Stinzendörfer, Andreas Wagner, “Short-Term Air Pollution Forecasting Using Embeddings in Neural Networks”, Atmosphere, 14, no. 2, 2023, 298  crossref
  4. Ismail Abiodun Sulaimon, Hafiz Alaka, Razak Olu-Ajayi, Mubashir Ahmad, Saheed Ajayi, Abdul Hye, “Effect of traffic data set on various machine-learning algorithms when forecasting air quality”, JEDT, 22, no. 3, 2024, 1030  crossref
  5. Rui Zhang, Norhashidah Awang, “An ensemble NLSTM-based model for PM2.5 concentrations prediction considering feature extraction and data decomposition”, Air Qual Atmos Health, 16, no. 10, 2023, 1969  crossref
  6. Baowei Wang, Weiwen Kong, Peng Zhao, “An air quality forecasting model based on improved convnet and RNN”, Soft Comput, 25, no. 14, 2021, 9209  crossref
  7. Kuan-Yen Wu, I-Wen Hsia, Pu-Yun Kow, Li-Chiu Chang, Fi-John Chang, “High-spatiotemporal-resolution PM2.5 forecasting by hybrid deep learning models with ensembled massive heterogeneous monitoring data”, Journal of Cleaner Production, 433, 2023, 139825  crossref
  8. B. Vijayalakshmi, M. Kaliappan, K. Ramar, K. Vijayalakshmi, S. Vimal, Concepts and Real-Time Applications of Deep Learning, 2021, 167  crossref
  9. Junzi Yang, Ajune Wanis Ismail, 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), 2022, 1  crossref
  10. Haolin Zhan, Xin Zhu, Jianming Hu, “A probabilistic forecasting approach for air quality spatio-temporal data based on kernel learning method”, Applied Soft Computing, 132, 2023, 109858  crossref
Previous
1
11
12
13
14
15
16
17
22
Next