15 citations to 10.1007/s00220-008-0522-5 (Crossref Cited-By Service)
  1. Ya. A. Prykarpatskyy, A. M. Samoilenko, “Classical M. A. Buhl Problem, Its Pfeiffer–Sato Solutions, and the Classical Lagrange–D’Alembert Principle for the Integrable Heavenly-Type Nonlinear Equations”, Ukr Math J, 69, no. 12, 2018, 1924  crossref
  2. E. V. Ferapontov, A. V. Odesskii, N. M. Stoilov, “Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions”, Journal of Mathematical Physics, 52, no. 7, 2011, 073505  crossref
  3. E.V. Ferapontov, V.S. Novikov, N.M. Stoilov, “Dispersive deformations of Hamiltonian systems of hydrodynamic type in 2+1 dimensions”, Physica D: Nonlinear Phenomena, 241, no. 23-24, 2012, 2138  crossref
  4. M Marvan, A Sergyeyev, “Recursion operators for dispersionless integrable systems in any dimension”, Inverse Problems, 28, no. 2, 2012, 025011  crossref
  5. A. Sergyeyev, “Integrable (3+1)-dimensional system with an algebraic Lax pair”, Applied Mathematics Letters, 92, 2019, 196  crossref
  6. Anatolij Prykarpatski, Oksana Hentosh, Yarema Prykarpatsky, “Geometric Structure of the Classical Lagrange-d’Alambert Principle and Its Application to Integrable Nonlinear Dynamical Systems”, Mathematics, 5, no. 4, 2017, 75  crossref
  7. Evgeny V. Ferapontov, Paolo Lorenzoni, Andrea Savoldi, “Hamiltonian Operators of Dubrovin-Novikov Type in 2D”, Lett Math Phys, 105, no. 3, 2015, 341  crossref
  8. E V Ferapontov, A Moro, “Dispersive deformations of hydrodynamic reductions of (2 + 1)D dispersionless integrable systems”, J. Phys. A: Math. Theor., 42, no. 3, 2009, 035211  crossref
  9. T Grava, C Klein, J Eggers, “Shock formation in the dispersionless Kadomtsev–Petviashvili equation”, Nonlinearity, 29, no. 4, 2016, 1384  crossref
  10. Marta Dell’Atti, Pierandrea Vergallo, “Classification of degenerate non-homogeneous Hamiltonian operators”, Journal of Mathematical Physics, 64, no. 3, 2023, 033505  crossref
1
2
Next