29 citations to 10.1016/0375-9601(91)91066-M (Crossref Cited-By Service)
  1. S. I. Svinolupov, R. I. Yamilov, “Explicit B�cklund transformations for multifield Schr�dinger equations. Jordan generalizations of the Toda chain”, Theor Math Phys, 98, no. 2, 1994, 139  crossref
  2. Fang Jian-Ping, Fei Jin-Xi, Zheng Chun-Long, “New Families of Exact Excitations to (2+1)-Dimensional Toda Lattice System via an Extended Projective Approach”, Commun. Theor. Phys., 45, no. 5, 2006, 864  crossref
  3. V.E. Adler, S.I. Svinolupov, R.I. Yamilov, “Multi-component Volterra and Toda type integrable equations”, Physics Letters A, 254, no. 1-2, 1999, 24  crossref
  4. S. I. Svinolupov, V. V. Sokolov, “Deformations of triple-Jordan systems and integrable equations”, Theor Math Phys, 108, no. 3, 1996, 1160  crossref
  5. Ravil Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39, no. 45, 2006, R541  crossref
  6. Wenhua Huang, Yulu Liu, “Jacobi elliptic function solutions of the Ablowitz–Ladik discrete nonlinear Schrödinger system”, Chaos, Solitons & Fractals, 40, no. 2, 2009, 786  crossref
  7. R.I. Yamilov, “On the construction of Miura type transformations by others of this kind”, Physics Letters A, 173, no. 1, 1993, 53  crossref
  8. Qi Wang, “Application of Rational Expansion Method for Differential-Difference Equation”, Commun. Theor. Phys., 56, no. 6, 2011, 981  crossref
  9. Wang Qi, “Application of Homotopy Analysis Method to Solve Relativistic Toda Lattice System”, Commun. Theor. Phys., 53, no. 6, 2010, 1111  crossref
  10. I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theor Math Phys, 191, no. 3, 2017, 793  crossref
1
2
3
Next