- S. I. Svinolupov, R. I. Yamilov, “Explicit B�cklund transformations for multifield Schr�dinger equations. Jordan generalizations of the Toda chain”, Theor Math Phys, 98, no. 2, 1994, 139
- Fang Jian-Ping, Fei Jin-Xi, Zheng Chun-Long, “New Families of Exact Excitations to (2+1)-Dimensional Toda Lattice System via an Extended Projective Approach”, Commun. Theor. Phys., 45, no. 5, 2006, 864
- V.E. Adler, S.I. Svinolupov, R.I. Yamilov, “Multi-component Volterra and Toda type integrable equations”, Physics Letters A, 254, no. 1-2, 1999, 24
- S. I. Svinolupov, V. V. Sokolov, “Deformations of triple-Jordan systems and integrable equations”, Theor Math Phys, 108, no. 3, 1996, 1160
- Ravil Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39, no. 45, 2006, R541
- Wenhua Huang, Yulu Liu, “Jacobi elliptic function solutions of the Ablowitz–Ladik discrete nonlinear Schrödinger system”, Chaos, Solitons & Fractals, 40, no. 2, 2009, 786
- R.I. Yamilov, “On the construction of Miura type transformations by others of this kind”, Physics Letters A, 173, no. 1, 1993, 53
- Qi Wang, “Application of Rational Expansion Method for Differential-Difference Equation”, Commun. Theor. Phys., 56, no. 6, 2011, 981
- Wang Qi, “Application of Homotopy Analysis Method to Solve Relativistic Toda Lattice System”, Commun. Theor. Phys., 53, no. 6, 2010, 1111
- I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theor Math Phys, 191, no. 3, 2017, 793