31 citations to 10.1524/anly.2013.1192 (Crossref Cited-By Service)
  1. Muhammad Amer Latif, Sever Silvestru Dragomir, Ebrahim Momoniat, “FEJÉR TYPE INEQUALITIES FOR HARMONICALLY-CONVEX FUNCTIONS WITH APPLICATIONS”, jaac, 7, no. 3, 2017, 795  crossref
  2. Mohamed S. S. Ali, “On Certain Properties for Two Classes of Generalized Convex Functions”, Abstract and Applied Analysis, 2016, 2016, 1  crossref
  3. Ye Shuang, Feng Qi, “Integral inequalities of Hermite-Hadamard type for GA-$ F $-convex functions”, AIMS Mathematics, 6, no. 9, 2021, 9582  crossref
  4. FENG QI, BO-YAN XI, “Some Hermite–Hadamard type inequalities for geometrically quasi-convex functions”, Proc Math Sci, 124, no. 3, 2014, 333  crossref
  5. Hong-Ping Yin, Feng Qi, “Hermite-Hadamard Type Inequalities for the Product of $(\alpha, m)$-Convex Function”, Missouri J. Math. Sci., 27, no. 1, 2015  crossref
  6. YuMei Liao, JianHua Deng, JinRong Wang, “Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I: for once differentiable geometric-arithmetically s-convex functions”, J Inequal Appl, 2013, no. 1, 2013, 443  crossref
  7. Bo-Yan Xi, Feng Qi, Lishan Liu, “Properties and inequalities for the (h1,h2)- and (h1,h2,m)-GA-convex functions”, Cogent Mathematics, 3, no. 1, 2016, 1176620  crossref
  8. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, “A Comprehensive Review on the Fejér-Type Inequality Pertaining to Fractional Integral Operators”, Axioms, 12, no. 7, 2023, 719  crossref
  9. Muhammad Amer Latif, “Weighted Hermite–Hadamard type inequalities for differentiable GA-convex and geometrically quasiconvex mappings”, Rocky Mountain J. Math., 51, no. 6, 2021  crossref
  10. Abdul Wakil Baidar, Mehmet Kunt, “Some Hermite–Hadamard type inequalities for GA‐s‐convex functions in the fourth sense”, Math Methods in App Sciences, 46, no. 5, 2023, 5466  crossref
Previous
1
2
3
4
Next