34 citations to 10.1016/S0377-0427(96)00138-0 (Crossref Cited-By Service)
  1. Abey S. Kelil, Appanah R. Appadu, “On Semi-Classical Orthogonal Polynomials Associated with a Modified Sextic Freud-Type Weight”, Mathematics, 8, no. 8, 2020, 1250  crossref
  2. I. Area, A. Branquinho, A. Foulquié Moreno, E. Godoy, “Characterizations of Δ-Volterra lattice: A symmetric orthogonal polynomials interpretation”, Journal of Mathematical Analysis and Applications, 433, no. 1, 2016, 243  crossref
  3. Xiao-Min Chen, “Nonisospectral extension of Schur flow with determinant solution and orthogonal polynomials on the unit circle”, Physica D: Nonlinear Phenomena, 444, 2023, 133609  crossref
  4. Xiang-Ke Chang, Xing-Biao Hu, Shi-Hao Li, “Moment modification, multipeakons, and nonisospectral generalizations”, Journal of Differential Equations, 265, no. 9, 2018, 3858  crossref
  5. Abey S. Kelil, Appanah R. Appadu, Sama Arjika, 381, Mathematical Analysis and Applications, 2021, 131  crossref
  6. Alexei Zhedanov, “Elliptic solutions of the Toda chain and a generalization of the Stieltjes–Carlitz polynomials”, Ramanujan J, 33, no. 2, 2014, 157  crossref
  7. A. I. Aptekarev, M. A. Lapik, Yu. N. Orlov, “Asymptotic behavior of the spectrum of combination scattering at Stokes phonons”, Theor Math Phys, 193, no. 1, 2017, 1480  crossref
  8. Luc Vinet, Alexei Zhedanov, “A characterization of classical and semiclassical orthogonal polynomials from their dual polynomials”, Journal of Computational and Applied Mathematics, 172, no. 1, 2004, 41  crossref
  9. A Gago-Alonso, L Santiago-Moreno, L R Piñeiro-Díaz, “Direct and inverse problems for the generalized relativistic Toda lattice and the connection with general orthogonal polynomials”, Inverse Problems, 24, no. 2, 2008, 025009  crossref
  10. Amílcar Branquinho, Ana Foulquié-Moreno, Juan C. García-Ardila, “Matrix Toda and Volterra lattices”, Applied Mathematics and Computation, 365, 2020, 124722  crossref
1
2
3
4
Next