34 citations to 10.1016/0375-9601(88)90608-1 (Crossref Cited-By Service)
  1. V.E. Adler, S.I. Svinolupov, R.I. Yamilov, “Multi-component Volterra and Toda type integrable equations”, Physics Letters A, 254, no. 1-2, 1999, 24  crossref
  2. Ravil Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39, no. 45, 2006, R541  crossref
  3. R I Yamilov, “Construction scheme for discrete Miura transformations”, J. Phys. A: Math. Gen., 27, no. 20, 1994, 6839  crossref
  4. K. Narita, “Solutions for the Mikhailov-Shabat-Yamilov Difference-Differential Equations and Generalized Solutions for the Volterra and the Toda Lattice Equations”, Progress of Theoretical Physics, 99, no. 3, 1998, 337  crossref
  5. V E Vekslerchik, “Backlund transformations for the Nizhnik–Novikov–Veselov equation”, J. Phys. A: Math. Gen., 37, no. 21, 2004, 5667  crossref
  6. Ф Ханизаде, Farbod Khanizadeh, Александр Васильевич Михайлов, Alexander Vasil'evich Mikhailov, Дж П Ванг, Jing Ping Wang, “Преобразования Дарбу и рекурсионные операторы для дифференциально-разностных уравнений”, Теоретическая и математическая физика, 177, no. 3, 2013, 387  crossref
  7. Ru-Guang Zhou, Jie Chen, “Two Hierarchies of New Differential-Difference Equations Related to the Darboux Transformations of the Kaup—Newell Hierarchy”, Commun. Theor. Phys., 63, no. 1, 2015, 1  crossref
  8. A.B. Shabat, R.I. Yamilov, “To a transformation theory of two-dimensional integrable systems”, Physics Letters A, 227, no. 1-2, 1997, 15  crossref
  9. V E Vekslerchik, “Functional representation of the Ablowitz-Ladik hierarchy”, J. Phys. A: Math. Gen., 31, no. 3, 1998, 1087  crossref
  10. A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, What Is Integrability?, 1991, 115  crossref
1
2
3
4
Next