- N. N. Abdullazade, G. A. Chechkin, “Perturbation of the Steklov Problem on a Small Part of the Boundary”, J Math Sci, 196, no. 4, 2014, 441
- Aleksandra G. Chechkina, Ciro D’Apice, Umberto De Maio, “Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition”, Journal of Computational and Applied Mathematics, 376, 2020, 112802
- Andrea Cancedda, “Spectral homogenization for a Robin–Neumann problem”, Boll Unione Mat Ital, 10, no. 2, 2017, 199
- A G Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. Math., 81, no. 1, 2017, 199
- Matteo Dalla Riva, Massimo Lanza de Cristoforis, Paolo Musolino, Singularly Perturbed Boundary Value Problems, 2021, 337
- R. R. Gadyl’shin, A. L. Piatnitski, G. A. Chechkin, “Spectral problem with Steklov condition on a thin perforated interface”, Dokl. Math., 93, no. 1, 2016, 52
- Shuyu Ye, Qiang Ma, Qinglin Tang, Junzhi Cui, Zhihui Li, “Second-Order Three-Scale Asymptotic Analysis and Algorithms for Steklov Eigenvalue Problems in Composite Domain with Hierarchical Cavities”, J Sci Comput, 98, no. 3, 2024, 61
- Bruno Franchi, Silvia Lorenzani, “From a Microscopic to a Macroscopic Model for Alzheimer Disease: Two-Scale Homogenization of the Smoluchowski Equation in Perforated Domains”, J Nonlinear Sci, 26, no. 3, 2016, 717
- Alexandre Girouard, Antoine Henrot, Jean Lagacé, “From Steklov to Neumann via homogenisation”, Arch Rational Mech Anal, 239, no. 2, 2021, 981
- Taras A. Mel'nyk, Tiziana Durante, “Spectral problems with perturbed Steklov conditions in thick junctions with branched structure”, Applicable Analysis, 2024, 1