15 citations to 10.4310/CMS.2015.v13.n7.a12 (Crossref Cited-By Service)
  1. Björn Gebhard, József J. Kolumbán, László Székelyhidi, “A New Approach to the Rayleigh–Taylor Instability”, Arch Rational Mech Anal, 241, no. 3, 2021, 1243  crossref
  2. Á. Castro, D. Faraco, F. Mengual, “Localized Mixing Zone for Muskat Bubbles and Turned Interfaces”, Ann. PDE, 8, no. 1, 2022, 7  crossref
  3. Ibrokhimbek Akramov, Emil Wiedemann, “Renormalization of active scalar equations”, Nonlinear Analysis, 179, 2019, 254  crossref
  4. Gennaro Ciampa, Gianluca Crippa, Stefano Spirito, “Smooth approximation is not a selection principle for the transport equation with rough vector field”, Calc. Var., 59, no. 1, 2020, 13  crossref
  5. Alberto Bressan, Marco Mazzola, Khai T. Nguyen, “Diffusion Approximations of Markovian Solutions to Discontinuous ODEs”, J Dyn Diff Equat, 2023  crossref
  6. Björn Gebhard, József J. Kolumbán, “Relaxation of the Boussinesq system and applications to the Rayleigh–Taylor instability”, Nonlinear Differ. Equ. Appl., 29, no. 1, 2022, 7  crossref
  7. Stefano Modena, László Székelyhidi, “Non-uniqueness for the Transport Equation with Sobolev Vector Fields”, Ann. PDE, 4, no. 2, 2018, 18  crossref
  8. Tianwen Luo, Chunjing Xie, Zhouping Xin, “Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms”, Advances in Mathematics, 291, 2016, 542  crossref
  9. Björn Gebhard, József J. Kolumbán, “On Bounded Two-Dimensional Globally Dissipative Euler Flows”, SIAM J. Math. Anal., 54, no. 3, 2022, 3457  crossref
  10. Alexey Cheskidov, Xiaoyutao Luo, “Nonuniqueness of Weak Solutions for the Transport Equation at Critical Space Regularity”, Ann. PDE, 7, no. 1, 2021, 2  crossref
1
2
Next