- Andreas Krug, Pawel Sosna, “Equivalences of equivariant derived categories”, J. London Math. Soc., 92, no. 1, 2015, 19
- Alexander Kuznetsov, “Homological projective duality”, Publ.math.IHES, 105, no. 1, 2007, 157
- Jianmin Chen, Zhibin Gao, Elizabeth Wicks, James J. Zhang, Xiaohong Zhang, Hong Zhu, “Frobenius–Perron theory of endofunctors”, Alg. Number Th., 13, no. 9, 2019, 2005
- Paul S Aspinwall, “The Breakdown of Topology at Small Scales”, J. High Energy Phys., 2004, no. 07, 2004, 021
- Lenny Taelman, “Derived equivalences of hyperkähler
varieties”, Geom. Topol., 27, no. 7, 2023, 2649
- David Favero, “Reconstruction and finiteness results for Fourier–Mukai partners”, Advances in Mathematics, 230, no. 4-6, 2012, 1955
- Yujiro Kawamata, “Derived categories of toric varieties”, Michigan Math. J., 54, no. 3, 2006
- J. Chen, Z. Gao, E. Wicks, J. Zhang, X. H. Zhang, H. Zhu, “Frobenius-Perron theory for projective schemes”, Trans. Amer. Math. Soc., 2023
- José Ignacio Burgos Gil, Gerard Freixas i Montplet, Răzvan Liţcanu, “Hermitian structures on the derived category of coherent sheaves”, Journal de Mathématiques Pures et Appliquées, 97, no. 5, 2012, 424
- Nicolò Sibilla, “A note on mapping class group actions on derived categories”, Proc. Amer. Math. Soc., 142, no. 6, 2014, 1837