42 citations to 10.1214/aop/1024404294 (Crossref Cited-By Service)
  1. Вадим Роландович Фаталов, Vadim Rolandovich Fatalov, “Константы в асимптотиках вероятностей малых уклонений для гауссовских процессов и полей”, УМН, 58, no. 4, 2003, 89  crossref
  2. Daniel Dobbs, Tai Melcher, “Small deviations for time-changed Brownian motions and applications to second-order chaos”, Electron. J. Probab., 19, no. none, 2014  crossref
  3. Leonid Victorovich Rozovskii, “Малые уклонения взвешенной суммы независимых положительных случайных величин с общим распределением, убывающим в нуле не быстрее степени”, Теория вероятностей и ее применения, 60, no. 1, 2015, 178  crossref
  4. André Mas, “Lower bound in regression for functional data by representation of small ball probabilities”, Electron. J. Statist., 6, no. none, 2012  crossref
  5. L.V. Rozovsky, “Small deviation probabilities of weighted sums under minimal moment assumptions”, Statistics & Probability Letters, 86, 2014, 1  crossref
  6. L. V. Rozovsky, “Small Deviations of Probabilities for Weighted Sum of Independent Positive Random Variables with a Common Distribution That Decreases at Zero Not Faster than a Power”, Theory Probab. Appl., 60, no. 1, 2016, 142  crossref
  7. A. I. Nazarov, “Logarithmic L 2-Small Ball Asymptotics with Respect to a Self-Similar Measure for Some Gaussian Processes”, J Math Sci, 133, no. 3, 2006, 1314  crossref
  8. J. M. P. Albin, “On Lower Tail Probabilities of Positive Random Sums”, Extremes, 7, no. 3, 2004, 199  crossref
  9. L.V. Rozovsky, “Small deviation probabilities for weighted sum of independent random variables with a common distribution that can decrease at zero fast enough”, Statistics & Probability Letters, 117, 2016, 192  crossref
  10. L. V. Rozovsky, “Small Deviation Probabilities for Weighted Sum of Independent Random Variables with a Common Distribution Having a Power Decrease at Zero, under Minimal Moment Assumptions”, Theory Probab. Appl., 62, no. 3, 2018, 491  crossref
Previous
1
2
3
4
5
Next