- A L Sakhnovich, “Non-Hermitian matrix Schr dinger equation: B cklund–Darboux transformation, Weyl functions and symmetry”, J. Phys. A: Math. Gen., 36, no. 28, 2003, 7789
- G. G. Grahovski, J. I. Mustafa, H. Susanto, “Nonlocal Reductions of The Multicomponent Nonlinear Schrödinger Equation on Symmetric Spaces”, Theor Math Phys, 197, no. 1, 2018, 1430
- A.M. Perelomov, “Supersymmetric chiral models: Geometrical aspects”, Physics Reports, 174, no. 4, 1989, 229
- A. Doliwa, A. Sym, “Non-linear σ-models on spheres and Toda systems”, Physics Letters A, 185, no. 5-6, 1994, 453
- Dimitrios Katsinis, Ioannis Mitsoulas, Georgios Pastras, “The dressing method as non linear superposition in sigma models”, J. High Energ. Phys., 2021, no. 3, 2021, 24
- I. V. Cherednik, “Algebraic aspects of two-dimensional chiral fields”, J Math Sci, 21, no. 4, 1983, 601
- J-P. Antoine, B. Piette, “Classical nonlinear σ models on Grassmann manifolds of compact or noncompact type”, Journal of Mathematical Physics, 28, no. 11, 1987, 2753
- Mousumi Saha, A Roy Chowdhury, “SL
(3) algebra, reduction problem, new integrable system and dressing approach”, Inverse Problems, 16, no. 1, 2000, 11
- Alexander L. Sakhnovich, Alexander A. Karelin, J. Seck-Tuoh-Mora, G. Perez-Lechuga, M. Gonzalez-Hernandez, “On explicit inversion of a subclass of operators with D-difference kernels and Weyl theory of the corresponding canonical systems”, Positivity, 14, no. 3, 2010, 547
- Zixiang Zhou, “Darboux transformations for the twisted
so(p, q)
system and local isometric immersion of space forms”, Inverse Problems, 14, no. 5, 1998, 1353