- Mario Berta, Kaushik P. Seshadreesan, Mark M. Wilde, “Rényi generalizations of quantum information measures”, Phys. Rev. A, 91, no. 2, 2015, 022333
- Ke Li, Yongsheng Yao, “Operational Interpretation of the Sandwiched Rényi Divergence of Order 1/2 to 1 as Strong Converse Exponents”, Commun. Math. Phys., 405, no. 2, 2024, 22
- Marco Dalai, 2013 IEEE International Symposium on Information Theory, 2013, 231
- Jun Ichi Fujii, R. Nakamoto, K. Yanagi, “Concavity of the auxiliary function appearing in quantum reliability function”, IEEE Trans. Inform. Theory, 52, no. 7, 2006, 3310
- M. Hamada, “Lower bounds on the quantum capacity and highest error exponent of general memoryless channels”, IEEE Trans. Inform. Theory, 48, no. 9, 2002, 2547
- A. Barg, “A low-rate bound on the reliability of a quantum discrete memoryless channel”, IEEE Trans. Inform. Theory, 48, no. 12, 2002, 3096
- Hao-Chung Cheng, Li Gao, Min-Hsiu Hsieh, “Properties of Noncommutative Rényi and Augustin Information”, Commun. Math. Phys., 390, no. 2, 2022, 501
- Christopher T. Chubb, Vincent Y. F. Tan, Marco Tomamichel, “Moderate Deviation Analysis for Classical Communication over Quantum Channels”, Commun. Math. Phys., 355, no. 3, 2017, 1283
- K. Yanagi, S. Furuichi, K. Kuriyama, IEEE International Symposium on Information Theory, 2003. Proceedings., 2003, 456
- Hao-Chung Cheng, Min-Hsiu Hsieh, “Concavity of the Auxiliary Function for Classical-Quantum Channels”, IEEE Trans. Inform. Theory, 62, no. 10, 2016, 5960