- Baruch Rosenstein, Brian J. Warr, S.H. Park, “Thermodynamics of the O(N)-invariant sigma-model in 2 + 1 dimensions”, Nuclear Physics B, 336, no. 3, 1990, 435
- F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malbouisson, A.E. Santana, “Quantum field theory on toroidal topology: Algebraic structure and applications”, Physics Reports, 539, no. 3, 2014, 135
- Adrien Florio, João M. Viana P. Lopes, José Matos, João Penedones, “Searching for continuous phase transitions in 5D SU(2) lattice gauge theory”, J. High Energ. Phys., 2021, no. 12, 2021, 76
- K. Gawȩdski, A. Kupiainen, “Renormalization of a non-renormalizable quantum field theory”, Nuclear Physics B, 262, no. 1, 1985, 33
- E. R. Nissimov, S. J. Pacheva, “Renormalization of the 1/N expansion and critical behaviour of (2+1)-dimensional supersymmetric non-linear sigma-models”, Lett Math Phys, 5, no. 4, 1981, 333
- F. David, “Non-perturbative effects and infrared renormalons within the 1/N expansion of the O(N) non-linear sigma model”, Nuclear Physics B, 209, no. 2, 1982, 433
- Huan Souza, L. Ibiapina Bevilaqua, A. C. Lehum, “Renormalization group improvement of the effective potential in six dimensions”, Phys. Rev. D, 102, no. 4, 2020, 045004
- F. DAVID, 7, Large-Order Behaviour of Perturbation Theory, 1990, 465
- A. N. Vasil'ev, Yu. M. Pis'mak, Yu. R. Khonkonen, “Simple method of calculating the critical indices in the 1/n expansion”, Theor Math Phys, 46, no. 2, 1981, 104
- Costas G Strouthos, Ioannis N Tziligakis, “The scaling region of the latticeO(N) sigma model at finite temperature”, J. High Energy Phys., 2003, no. 02, 2003, 034