- S. V. Nagaev, V. Vakhtel, “Probability Inequalities for a Critical Galton–Watson Process”, Theory Probab. Appl., 50, no. 2, 2006, 225
- Tomáš Brázdil, Javier Esparza, Stefan Kiefer, Michael Luttenberger, 6199, Automata, Languages and Programming, 2010, 539
- Сергей Викторович Нагаев, Sergey Victorovich Nagaev, Виталий Иванович Вахтель, Vitalii Ivanovich Vakhtel', “Вероятностные неравенства для критического процесса Гальтона - Ватсона”, ТВП, 50, no. 2, 2005, 266
- Xin He, “Local Convergence of Critical Random Trees and Continuous-State Branching Processes”, J Theor Probab, 35, no. 2, 2022, 685
- Anthony G. Pakes, “A limit theorem for the maxima of the para-critical simple branching process”, Advances in Applied Probability, 30, no. 3, 1998, 740
- I. Rahimov, “APPROXIMATION OF EXCEEDANCE PROCESSES IN LARGE POPULATIONS”, Stochastic Models, 17, no. 2, 2001, 147
- I. Rahimov, “Limit Theorems for the Size of Subpopulation of Productive Individuals”, Stochastic Models, 20, no. 3, 2004, 261
- Ibrahim Rahimov, George P. Yanev, “On maximum family size in branching processes”, J. Appl. Probab., 36, no. 03, 1999, 632
- Tomáš Brázdil, Javier Esparza, Stefan Kiefer, Michael Luttenberger, “Space-efficient scheduling of stochastically generated tasks”, Information and Computation, 210, 2012, 87
- V. A. Topchii, V. A. Vatutin, “Maximum of the Critical Galton–Watson Processes and Left-Continuous Random Walks”, Theory Probab. Appl., 42, no. 1, 1998, 17