- Albert C. J. Luo, “Bifurcations for Homoclinic Networks in Two-Dimensional Polynomial Systems”, Int. J. Bifurcation Chaos, 34, no. 03, 2024, 2430006
- Jibin Li, H. S. Y. Chan, K. W. Chung, “Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5”, Sci. China Ser. A-Math., 45, no. 7, 2002, 817
- Steve Smale, “Mathematical problems for the next century”, The Mathematical Intelligencer, 20, no. 2, 1998, 7
- Fernando Sanz, “Balanced coordinates for spiraling dynamics”, Qual. Th. Dyn. Syst., 3, no. 1, 2002, 181
- Dana Schlomiuk, Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, 2004, 471
- Tamara Servi, “Multivariable Newton-Puiseux Theorem for Generalised Quasianalytic Classes”, Annales de l'Institut Fourier, 65, no. 1, 2015, 349
- Y. Ilyashenko, 157, Mathematical Sciences with Multidisciplinary Applications, 2016, 269
- MONTSERRAT CORBERA, JAUME LLIBRE, “GENERATION OF SYMMETRIC PERIODIC ORBITS BY A HETEROCLINIC LOOP FORMED BY TWO SINGULAR POINTS AND THEIR INVARIANT MANIFOLDS OF DIMENSIONS 1 AND 2 IN ℝ3”, Int. J. Bifurcation Chaos, 17, no. 09, 2007, 3295
- TOMAS JOHNSON, WARWICK TUCKER, “AN IMPROVED LOWER BOUND ON THE NUMBER OF LIMIT CYCLES BIFURCATING FROM A HAMILTONIAN PLANAR VECTOR FIELD OF DEGREE 7”, Int. J. Bifurcation Chaos, 20, no. 05, 2010, 1451
- Weigu Li, Jaume Llibre, Jiazhong Yang, Zhifen Zhang, “Limit Cycles Bifurcating from the Period Annulus of Quasi-Homogeneous Centers”, J Dyn Diff Equat, 21, no. 1, 2009, 133