- S. Sarkar, A. Scotti, “From Topographic Internal Gravity Waves to Turbulence”, Annu. Rev. Fluid Mech., 49, no. 1, 2017, 195
- Hee-Joong Chung, Dohyeong Kim, Minhyong Kim, Georgios Pappas, Jeehoon Park, Hwajong Yoo, “Abelian Arithmetic Chern–Simons Theory and Arithmetic Linking Numbers”, International Mathematics Research Notices, 2019, no. 18, 2019, 5674
- Che Sun, “Geometric stability of stationary Euler flows”, Geophysical & Astrophysical Fluid Dynamics, 114, no. 3, 2020, 317
- Franco Flandoli, Umberto Pappalettera, Milo Viviani, “On the Infinite Dimension Limit of Invariant Measures and Solutions of Zeitlin’s 2D Euler Equations”, J Stat Phys, 189, no. 3, 2022, 43
- Nicolas Besse, Uriel Frisch, “Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces”, J. Fluid Mech., 825, 2017, 412
- Hanno v. Bodecker, Gunnar Hornig, “Link Invariants of Electromagnetic Fields”, Phys. Rev. Lett., 92, no. 3, 2004, 030406
- Yann Brenier, “Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq Equations”, J Nonlinear Sci, 19, no. 5, 2009, 547
- Thierry Gallay, Vladimír Šverák, “Arnold’s variational principle and its application
to the stability of planar vortices”, Analysis & PDE, 17, no. 2, 2024, 681
- Tsutomu Kambe, “Variational formulation of ideal fluid flows according to gauge principle”, Fluid Dyn. Res., 40, no. 6, 2008, 399
- William Donnelly, Laurent Freidel, Seyed Faroogh Moosavian, Antony J. Speranza, “Matrix quantization of gravitational edge modes”, J. High Energ. Phys., 2023, no. 5, 2023, 163