- Katarína Hriňáková, Martin Knor, Riste Škrekovski, “An inequality between variable wiener index and variable szeged index”, Applied Mathematics and Computation, 362, 2019, 124557
- Vijay K. Agrawal, Shahnaz Bano, Padmakar V. Khadikar, “Topological approach to quantifying molecular lipophilicity of heterogeneous set of organic compounds”, Bioorganic & Medicinal Chemistry, 11, no. 18, 2003, 4039
- Douglas J. Klein, Ivan Gutman, “Wiener-Number-Related Sequences”, J. Chem. Inf. Comput. Sci., 39, no. 3, 1999, 534
- Molecular Descriptors for Chemoinformatics, 2009, 1
- Milan Randić, Jure Zupan, Topology in Chemistry, 2002, 249
- Nasser Goudarzi, M. H. Fatemi, A. Samadi-Maybodi, “Quantitative Structure–Properties Relationship Study of the29Si-NMR Chemical Shifts of Some Silicate Species”, Spectroscopy Letters, 42, no. 4, 2009, 186
- Shibsankar Das, Shikha Rai, “M-polynomial and related degree-based topological indices of the third type of chain Hex-derived network”, Malaya J. Mat, 8, no. 4, 2020, 1842
- Sandi Klavžar, M.J. Nadjafi-Arani, “Wiener index versus Szeged index in networks”, Discrete Applied Mathematics, 161, no. 7-8, 2013, 1150
- Bruno Louis, Jyoti Singh, Basheerulla Shaik, Vijay K. Agrawal, Padmakar V. Khadikar, “QSPR Study on the Estimation of Solubility of Drug‐like Organic Compounds: A Case of Barbiturates”, Chem Biol Drug Des, 74, no. 2, 2009, 190
- Alexandru T. Balaban, Encyclopedia of Complexity and Systems Science, 2014, 1