- J. Randon-Furling, D. Zaporozhets, “Convex Hulls of Several Multidimensional Gaussian Random Walks”, J Math Sci, 281, no. 1, 2024, 168

- Benjamin De Bruyne, Olivier Bénichou, Satya N Majumdar, Grégory Schehr, “Statistics of the maximum and the convex hull of a Brownian motion in confined geometries”, J. Phys. A: Math. Theor., 55, no. 14, 2022, 144002

- Alexander K Hartmann, Satya N Majumdar, Hendrik Schawe, Grégory Schehr, “The convex hull of the run-and-tumble particle in a plane”, J. Stat. Mech., 2020, no. 5, 2020, 053401

- Wojciech Cygan, Nikola Sandrić, Stjepan Šebek, Andrew Wade, “Iterated-logarithm laws for convex hulls of random walks with drift”, Trans. Amer. Math. Soc., 2024

- Claude Godrèche, Jean-Marc Luck, “On sequences of convex records in the plane”, J. Stat. Mech., 2024, no. 9, 2024, 093208

- Zakhar Kabluchko, Alexander Marynych, “Random walks in the high-dimensional limit I: The Wiener spiral”, Ann. Inst. H. Poincaré Probab. Statist., 60, no. 4, 2024

- Hugo Panzo, “Sylvester’s problem for random walks and bridges”, Statistics & Probability Letters, 2025, 110349

- S. Sebek, “Convex Hull of Brownian Motion and Brownian Bridge”, Markov Processes And Related Fields, no. 2024 № 4 (30), 2025, 459
