12 citations to 10.1088/1751-8113/43/29/292002 (Crossref Cited-By Service)
  1. A. K. Prykarpatski, J. L. Cieśliński, “A Discrete Nonlinear Schrödinger-Type Hierarchy, Its Finite-Dimensional Reduction Analysis, and the Numerical Integration Scheme”, J Math Sci, 231, no. 6, 2018, 779  crossref
  2. Pavel Winternitz, Symmetries and Integrability of Difference Equations, 2011, 292  crossref
  3. Decio Levi, Eugenio Ricca, Zora Thomova, Pavel Winternitz, “Lie group analysis of a generalized Krichever-Novikov differential-difference equation”, Journal of Mathematical Physics, 55, no. 10, 2014, 103503  crossref
  4. Wenting Li, Yueting Chen, Kun Jiang, “Non-Classical Symmetry Analysis of a Class of Nonlinear Lattice Equations”, Symmetry, 15, no. 12, 2023, 2199  crossref
  5. Linyu Peng, “Symmetries, Conservation Laws, and Noether's Theorem for Differential‐Difference Equations”, Stud Appl Math, 139, no. 3, 2017, 457  crossref
  6. Jan L. Cieśliński, Anatolij K. Prykarpatski, “Discrete approximations on functional classes for the integrable nonlinear Schrödinger dynamical system: A symplectic finite-dimensional reduction approach”, Journal of Mathematical Analysis and Applications, 430, no. 1, 2015, 279  crossref
  7. Linyu Peng, Peter E. Hydon, “Transformations, symmetries and Noether theorems for differential-difference equations”, Proc. R. Soc. A., 478, no. 2259, 2022, 20210944  crossref
  8. R. Sahadevan, G. Nagavigneshwari, “Continuous symmetries of certain nonlinear partial difference equations and their reductions”, Physics Letters A, 378, no. 43, 2014, 3155  crossref
  9. Shou-Fu Tian, Mei-Juan Xu, Tian-Tian Zhang, “A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation”, Proc. R. Soc. A., 477, no. 2255, 2021, 20210455  crossref
  10. Linyu Peng, “Symmetries and Reductions of Integrable Nonlocal Partial Differential Equations”, Symmetry, 11, no. 7, 2019, 884  crossref
1
2
Next