- Xu Rui-Li, Fang Jian-Hui, Zhang Bin, “The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass”, Acta Phys. Sin., 62, no. 15, 2013, 154501
- Li Zou, Zhen Wang, Zhi Zong, “Generalized differential transform method to differential-difference equation”, Physics Letters A, 373, no. 45, 2009, 4142
- Shi Shen-Yang, Huang Xiao-Hong, “Noether symmetry and Lie symmetry of discrete holonomic systems with dependent coordinates”, Chinese Phys. B, 17, no. 5, 2008, 1554
- D Levi, R Yamilov, “On the integrability of a new discrete nonlinear Schrödinger equation”, J. Phys. A: Math. Gen., 34, no. 41, 2001, L553
- R Hernández Heredero, D Levi, P Winternitz, “Symmetries of the discrete Burgers equation”, J. Phys. A: Math. Gen., 32, no. 14, 1999, 2685
- L Martina, S Lafortune, P Winternitz, “Point symmetries of generalized Toda field theories: II. Symmetry reduction”, J. Phys. A: Math. Gen., 33, no. 36, 2000, 6431
- Ronald C. King, Algebraic Methods in Physics, 2001, 121
- Yaxuan Yu, Qi Wang, Caixia Gao, “Rational formal solutions of differential-difference equations”, Chaos, Solitons & Fractals, 33, no. 5, 2007, 1642
- Zhen Wang, Li Zou, Hongqing Zhang, “Applying homotopy analysis method for solving differential-difference equation”, Physics Letters A, 369, no. 1-2, 2007, 77
- Guo-cheng Wu, “Uniformly constructing soliton solutions and periodic solutions to Burgers–Fisher equation”, Computers & Mathematics with Applications, 58, no. 11-12, 2009, 2355