125 citations to 10.1023/A:1018917218956 (Crossref Cited-By Service)
  1. George Kapetanios, Andrew P. Blake, “TESTS OF THE MARTINGALE DIFFERENCE HYPOTHESIS USING BOOSTING AND RBF NEURAL NETWORK APPROXIMATIONS”, Econom. Theory, 26, no. 5, 2010, 1363  crossref
  2. Rakib Al-Fahad, Mohammed Yeasin, A S M Iftekhar Anam, Bahareh Elahian, 2017 International Joint Conference on Neural Networks (IJCNN), 2017, 1202  crossref
  3. Vladimir V. Galatenko, Taras P. Lukashenko, Victor A. Sadovnichiy, Modern Mathematics and Mechanics, 2019, 3  crossref
  4. Enrico Capobianco, “Kernel methods and flexible inference for complex stochastic dynamics”, Physica A: Statistical Mechanics and its Applications, 387, no. 16-17, 2008, 4077  crossref
  5. Lin Xu, Xiangyong Cao, Jing Yao, Zheng Yan, “Orthogonal Super Greedy Learning for Sparse Feedforward Neural Networks”, IEEE Trans. Netw. Sci. Eng., 9, no. 1, 2022, 161  crossref
  6. Yuanbo Li, Ngai Hang Chan, Chun Yip Yau, Rongmao Zhang, “Group orthogonal greedy algorithm for change-point estimation of multivariate time series”, Journal of Statistical Planning and Inference, 212, 2021, 14  crossref
  7. V. N. Temlyakov, “Greedy Approximation in Convex Optimization”, Constr Approx, 41, no. 2, 2015, 269  crossref
  8. Peter Oswald, “Greedy algorithms and bestm-term approximation with respect to biorthogonal systems”, The Journal of Fourier Analysis and Applications, 7, no. 4, 2001, 325  crossref
  9. A. S. Orlova, “The rate of convergence of weak greedy approximations over orthogonal dictionaries”, Moscow Univ. Math. Bull., 72, no. 2, 2017, 84  crossref
  10. Rémi Gribonval, Time‐Frequency Analysis, 2008, 61  crossref
Previous
1
7
8
9
10
11
12
13
Next