- A. V. Kazeykina, “Stability of a traveling-wave solution to the Cauchy problem for the Korteweg-de Vries-Burgers equation”, Comput. Math. and Math. Phys., 50, no. 4, 2010, 690
- A. V. Gasnikov, “Time asymptotic behavior of the solution to a quasilinear parabolic equation”, Comput. Math. and Math. Phys., 46, no. 12, 2006, 2136
- A. V. Gasnikov, “On the intermediate asymptotic of the solution to the Cauchy problem for a quasilinear equation of parabolic type with a monotone initial condition”, J. Comput. Syst. Sci. Int., 47, no. 3, 2008, 475
- Raul Argun, Alexandr Gorbachev, Dmitry Lukyanenko, Maxim Shishlenin, “On Some Features of the Numerical Solving of Coefficient Inverse Problems for an Equation of the Reaction-Diffusion-Advection-Type with Data on the Position of a Reaction Front”, Mathematics, 9, no. 22, 2021, 2894
- R.L. Argun, V.T. Volkov, D.V. Lukyanenko, “Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction–diffusion problem”, Journal of Computational and Applied Mathematics, 412, 2022, 114294
- Александр Владимирович Гасников, Alexander Vladimirovich Gasnikov, “Асимптотическое по времени поведение решения начальной задачи Коши для закона сохранения с нелинейной дивергентной вязкостью”, Изв. РАН. Сер. матем., 73, no. 6, 2009, 39
- Thierry Gallay, Arnd Scheel, “Viscous shocks and long-time behavior of scalar conservation laws”, CPAA, 2023
- G. M. Henkin, “Burgers type equations, Gelfand’s problem and Schumpeterian dynamics”, J. Fixed Point Theory Appl., 11, no. 2, 2012, 199
- A. V. Gasnikov, “Convergence in the form of a solution to the Cauchy problem for a quasilinear parabolic equation with a monotone initial condition to a system of waves”, Comput. Math. and Math. Phys., 48, no. 8, 2008, 1376
- G.M. Henkin, Encyclopedia of Mathematical Physics, 2006, 446