- G. J. Groenewald, S. ter Horst, M. A. Kaashoek, “The Bezout-Corona Problem Revisited: Wiener Space Setting”, Complex Anal. Oper. Theory, 10, no. 1, 2016, 115

- Emmanuel Fricain, Rishika Rupam, “Asymptotically orthonormal basis and Toeplitz operators”, Journal of Mathematical Analysis and Applications, 474, no. 2, 2019, 944

- L. Golinskii, A. Kheifets, F. Peherstorfer, P. Yuditskii, “Scattering Theory for CMV Matrices: Uniqueness, Helson–Szegő and Strong Szegő Theorems”, Integr. Equ. Oper. Theory, 69, no. 4, 2011, 479

- G. Ramesh, Shanola S. Sequeira, “Absolutely norm attaining Toeplitz and absolutely minimum attaining Hankel operators”, Journal of Mathematical Analysis and Applications, 516, no. 1, 2022, 126497

- Anuradha Gupta, Bhawna Gupta, “On k-composition and k-Hankel composition operators on the derivative Hardy space”, Banach J. Math. Anal., 14, no. 4, 2020, 1602

- Akihiko Inoue, “Explicit formulas for the inverses of Toeplitz matrices, with applications”, Probab. Theory Relat. Fields, 185, no. 1-2, 2023, 513

- E. Yu. Kuzmenkova, A. R. Mirotin, “On Normal $ \mu $-Hankel Operators”, Sib Math J, 64, no. 3, 2023, 731

- Alexandru Aleman, Rui Pacheco, John C. Wood, “Harmonic maps and shift-invariant subspaces”, Monatsh Math, 194, no. 4, 2021, 625

- Marcus Sundhäll, “Trace class criteria for bilinear Hankel forms of higher weights”, Proc. Amer. Math. Soc., 135, no. 5, 2006, 1377

- Fredrik Andersson, Marcus Carlsson, “On the Structure of Positive Semi-Definite Finite Rank General Domain Hankel and Toeplitz Operators in Several Variables”, Complex Anal. Oper. Theory, 11, no. 4, 2017, 755
