- Ronald Doney, Elinor Jones, “Large deviation results for random walks conditioned to stay
positive”, Electron. Commun. Probab., 17, no. none, 2012
- V. I. Afanasyev, “LOCAL INVARIANCE PRINCIPLE FOR A RANDOM WALK WITH ZERO DRIFT”, J Math Sci, 266, no. 6, 2022, 850
- R. A. Doney, M. S. Savov, “The asymptotic behavior of densities related to the supremum of a stable process”, Ann. Probab., 38, no. 1, 2010
- Vladimir Alekseevich Vatutin, Elena Evgen'evna Dyakonova, “Много ли семейств живет долго?”, Теория вероятностей и ее применения, 61, no. 4, 2016, 709
- A. A. Mogul’skiĭ, “Local limit theorem for the first crossing time of a fixed level by a random walk”, Sib. Adv. Math., 20, no. 3, 2010, 191
- Vladimir Alekseevich Vatutin, Elena Evgen'evna Dyakonova, “Критические ветвящиеся процессы, эволюционирующие в неблагоприятной случайной среде”, Дискретная математика, 34, no. 3, 2022, 20
- V. A. Vatutin, E. E. Dyakonova, “How Many Families Survive for a Long Time?”, Theory Probab. Appl., 61, no. 4, 2017, 692
- Elie Aïdékon, Bruno Jaffuel, “Survival of branching random walks with absorption”, Stochastic Processes and their Applications, 121, no. 9, 2011, 1901
- R. A. Doney, V. Rivero, “Asymptotic behaviour of first passage time distributions for Lévy processes”, Probab. Theory Relat. Fields, 157, no. 1-2, 2013, 1
- Vincent Bansaye, Christian Böinghoff, “Small positive values for supercritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50, no. 3, 2014