20 citations to 10.1016/j.na.2018.02.012 (Crossref Cited-By Service)
  1. V. G. Zvyagin, V. P. Orlov, “On the Weak Solvability of a Fractional Viscoelasticity Model”, Dokl. Math., 98, no. 3, 2018, 568  crossref
  2. V. G. Zvyagin, V. P. Orlov, “The Problem of the Flow of One Type of Non-Newtonian Fluid through the Boundary of a Multiply Connected Domain”, Dokl. Math., 107, no. 2, 2023, 112  crossref
  3. Viktor Grigorevich Zvyagin, Vladimir Petrovich Orlov, “О слабой разрешимости дробных моделей вязкоупругой жидкости высокого порядка”, Известия Российской академии наук. Серия математическая, 88, no. 1, 2024, 58  crossref
  4. Victor G. Zvyagin, 1997, 2018, 020017  crossref
  5. A. S. Boldyrev, V. G. Zvyagin, “Attractors for Model of Viscoelastic Media with Memory Motion in Non-Autonomous Case”, Lobachevskii J Math, 40, no. 7, 2019, 918  crossref
  6. A. V. Zvyagin, “Uniform Attractors for Non-Autonomous Systems of Nonlinearly Viscous Fluid”, Lobachevskii J Math, 44, no. 3, 2023, 956  crossref
  7. V. G. Zvyagin, V. P. Orlov, “Weak Solvability of One Viscoelastic Fractional Dynamics Model of Continuum with Memory”, J. Math. Fluid Mech., 23, no. 1, 2021, 9  crossref
  8. Mikhail Turbin, Anastasiia Ustiuzhaninova, “Existence of weak solution to initial-boundary value problem for finite order Kelvin–Voigt fluid motion model”, Bol. Soc. Mat. Mex., 29, no. 2, 2023, 54  crossref
  9. Vladimir P. Orlov, 2325, INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 020008  crossref
  10. Viktor Grigorevich Zvyagin, Vladimir Petrovich Orlov, “Weak solvability of motion models for a viscoelastic fluid with a higher-order rheological relation”, Russian Math. Surveys, 77, no. 4, 2022, 753  crossref
1
2
Next