- Alexander V. Shapovalov, Anton E. Kulagin, “Semiclassical Approach to the Nonlocal Kinetic Model of Metal Vapor Active Media”, Mathematics, 9, no. 23, 2021, 2995
- F N Litvinets, A V Shapovalov, A Yu Trifonov, “Berry phases for 3D Hartree-type equations with a quadratic potential and a uniform magnetic field”, J. Phys. A: Math. Theor., 40, no. 36, 2007, 11129
- Владимир Владимирович Белов, Vladimir Vladimirovich Belov, Федор Николаевич Литвинец, Fedor Nikolaevich Litvinets, Андрей Юрьевич Трифонов, Andrei Yurievich Trifonov, “Квазиклассические спектральные серии оператора типа Хартри, отвечающие точке покоя классической системы Гамильтона - Эренфеста”, ТМФ, 150, no. 1, 2007, 26
- A. V. Bezverbnyi, A. S. Gogolev, R. O. Rezaev, A. Yu. Trifonov, “Nonlinear Fokker-Planck-Kolmogorov Equation in the Semiclassical Coherent Trajectory Approximation”, Russ Phys J, 48, no. 6, 2005, 592
- A L Lisok, A Yu Trifonov, A V Shapovalov, “The evolution operator of the Hartree-type equation with a quadratic potential”, J. Phys. A: Math. Gen., 37, no. 16, 2004, 4535
- A. V. Borisov, A. Yu. Trifonov, A. V. Shapovalov, “The Nonlinear Schrodinger Equation for a Many-Dimensional System in an Oscillator Field”, Russ Phys J, 48, no. 7, 2005, 746
- V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, “Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton-Ehrenfest system”, Theor Math Phys, 150, no. 1, 2007, 21
- A. Yu. Trifonov, A. V. Shapovalov, “The one-dimensional Fisher–Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation”, Russ Phys J, 52, no. 9, 2009, 899