- Nguyen Thi Anh Hang, Hoang Le Truong, “The Affine Cones Over Fano–Mukai Fourfolds of Genus 7 Are Flexible”, International Mathematics Research Notices, 2023, rnad275
- Ivan Arzhantsev, Hubert Flenner, Shulim Kaliman, Frank Kutzschebauch, Mikhail Zaidenberg, Birational Geometry, Rational Curves, and Arithmetic, 2013, 1
- Alexander Perepechko, “Affine cones over cubic surfaces are flexible in codimension one”, Forum Mathematicum, 33, no. 2, 2021, 339
- I. A. Cheltsov, “Cylinders in rational surfaces”, Sb. Math., 212, no. 3, 2021, 399
- Ivan Anatol'evich Cheltsov, “Цилиндры в рациональных поверхностях”, Математический сборник, 212, no. 3, 2021, 139
- Grigory Belousov, 409, Birational Geometry, Kähler–Einstein Metrics and Degenerations, 2023, 17
- Fedor Bogomolov, Ilya Karzhemanov, Karine Kuyumzhiyan, Birational Geometry, Rational Curves, and Arithmetic, 2013, 77
- Иван Владимирович Аржанцев, Ivan Vladimirovich Arzhantsev, Михаил Григорьевич Зайденберг, Mikhail Grigor'evich Zaidenberg, Каринэ Георгиевна Куюмжиян, Karine Georgievna Kuyumzhiyan, “Многообразия флагов, торические многообразия и надстройки: три примера бесконечной транзитивности”, Матем. сб., 203, no. 7, 2012, 3
- Yuri Prokhorov, Mikhail Zaidenberg, The Art of Doing Algebraic Geometry, 2023, 363
- Ivan Cheltsov, Jihun Park, Joonyeong Won, “Cylinders in del Pezzo Surfaces”, Int Math Res Notices, 2016, rnw063