10 citations to 10.1016/0012-365X(91)90214-M (Crossref Cited-By Service)
  1. Noboru Hamada, Tor Helleseth, “The uniqueness of [87,5,57; 3]-codes and the nonexistence of [258,6,171; 3]-codes”, Journal of Statistical Planning and Inference, 56, no. 1, 1996, 105  crossref
  2. Noboru Hamada, “On the nonexistence of some quaternary linear codes meeting the Griesmer bound”, Journal of Statistical Planning and Inference, 72, no. 1-2, 1998, 303  crossref
  3. M.L. Aggarwal, Mukta Datta Mazumder, “Optimal fractional factorial plans using minihypers”, Statistics & Probability Letters, 75, no. 4, 2005, 291  crossref
  4. Tatsuya Maruta, Maori Shinohara, Ayako Kikui, “On optimal linear codes over F5”, Discrete Mathematics, 309, no. 6, 2009, 1255  crossref
  5. Noboru Hamada, Tor Helleseth, “A characterization of some {3v2 + v3, 3v1 + v2; 3, 3}-minihypers and some [15, 4, 9; 3]-codes with B2 = 0”, Journal of Statistical Planning and Inference, 56, no. 1, 1996, 129  crossref
  6. Wen Ma, Jinquan Luo, “Nonexistence of linear codes meeting the Griesmer bound”, Discrete Mathematics, 345, no. 4, 2022, 112744  crossref
  7. Noboru Hamada, Tor Helleseth, “A characterization of some {v2+2v3, v1+2v2;k−1,3}-minihypers and some (vk−30,k,3k−1−21;3)-codes meeting the Griesmer bound”, Journal of Statistical Planning and Inference, 34, no. 3, 1993, 387  crossref
  8. Noboru Hamada, Tor Helleseth, �yvind Ytrehus, “On the construction of [q 4 + q 2 ? q, 5,q 4 ? q 3 + q 2 ? 2q; q]-codes meeting the Griesmer bound”, Des Codes Crypt, 2, no. 3, 1992, 225  crossref
  9. Noboru Hamada, Tomoko Maekawa, “A characterization of some {3v1 + v3, 3v0 + v2; 3, 3}-minihypers and its applications to error-correcting codes”, Journal of Statistical Planning and Inference, 56, no. 1, 1996, 147  crossref
  10. Noboru Hamada, “A characterization of some [n,k,d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry”, Discrete Mathematics, 116, no. 1-3, 1993, 229  crossref