- J N Kriel, F G Scholtz, “Eigenvalue distributions from a star product approach”, J. Phys. A: Math. Theor., 45, no. 47, 2012, 475204
- Maria Alexandrovna Lapik, Dmitriy Nikolaevich Tulyakov, “Nikishin and Anjelesko vector equilibrium problems
and multidimensional Toda lattice. The limiting case when the second interval is a point”, KIAM Prepr., no. 275, 2018, 1
- M. A. Lapik, “Dynamics of Supports of Extremal Measures in the Field of a Point Charge”, Math Notes, 108, no. 5-6, 2020, 752
- J Coussement, W Van Assche, “A continuum limit of the relativistic Toda lattice: asymptotic theory of discrete Laurent orthogonal polynomials with varying recurrence coefficients”, J. Phys. A: Math. Gen., 38, no. 15, 2005, 3337
- Мария Александровна Лапик, Mariya Aleksandrovna Lapik, “О носителе экстремальной меры в векторной задаче равновесия”, Матем. сб., 197, no. 8, 2006, 101
- M. A. Lapik, “Interval of equilibrium for the logarithmic potential of an extremal measure with a constraint, and the continuum limit of the Toda lattice”, Russ. J. Math. Phys., 13, no. 1, 2006, 119
- Maria Alexandrovna Lapik, “Extremal measure and external field for two parameters vector equilibrium logarithmic potential problem”, KIAM Prepr., no. 115, 2016, 1
- Diego Dominici, “Recurrence coefficients of Toda-type orthogonal polynomials I. Asymptotic analysis”, Bull. Math. Sci., 10, no. 02, 2020, 2050003
- A. Martínez-Finkelshtein, R. Orive, E. A. Rakhmanov, “Phase Transitions and Equilibrium Measures in Random Matrix Models”, Commun. Math. Phys., 333, no. 3, 2015, 1109
- A. I. Aptekarev, M. A. Lapik, Yu. N. Orlov, “Asymptotic behavior of the spectrum of combination scattering at Stokes phonons”, Theor Math Phys, 193, no. 1, 2017, 1480