- Yu. S. Popkov, A. Yu. Popkov, B. S. Darkhovsky, “Parallel Monte Carlo for entropy robust estimation”, Math Models Comput Simul, 8, no. 1, 2016, 27
- Jie Bi, Yong Zhang, “An improved Henry gas solubility optimization for optimization tasks”, Appl Intell, 52, no. 6, 2022, 5966
- Vladislav Sovrasov, “Comparison of dimensionality reduction schemes for derivative-free global optimization algorithms”, Procedia Computer Science, 136, 2018, 136
- G. García, “Approximating roots of nonlinear systems by α-dense curves”, Numer Algor, 82, no. 3, 2019, 749
- Oleg A. Kuzenkov, Vladimir A. Grishagin, 1738, 2016, 400007
- Coralia Cartis, Jaroslav M. Fowkes, Nicholas I. M. Gould, “Branching and bounding improvements for global optimization algorithms with Lipschitz continuity properties”, J Glob Optim, 61, no. 3, 2015, 429
- Victor Gergel, Evgeny Kozinov, 197, Models, Algorithms, and Technologies for Network Analysis, 2017, 27
- Ya. D. Sergeyev, D. E. Kvasov, M. S. Mukhametzhanov, 10556, Learning and Intelligent Optimization, 2017, 383
- Haitao Liu, Shengli Xu, Ying Ma, Xiaofang Wang, “Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces”, J Glob Optim, 63, no. 2, 2015, 229
- Linas Stripinis, Julius Žilinskas, Leocadio G. Casado, Remigijus Paulavičius, “On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization”, Applied Mathematics and Computation, 390, 2021, 125596