- Debdeep Sinha, “Integrable local and non-local vector Non-linear Schrödinger Equation with balanced loss and gain”, Physics Letters A, 448, 2022, 128338
- G. G. Grahovski, J. I. Mustafa, H. Susanto, “Nonlocal Reductions of The Multicomponent Nonlinear Schrödinger Equation on Symmetric Spaces”, Theor Math Phys, 197, no. 1, 2018, 1430
- V S Gerdjikov, “Generalised Fourier transforms for the soliton equations. Gauge-covariant formulation”, Inverse Problems, 2, no. 1, 1986, 51
- Владимир С Герджиков, Vladimir S Gerdjikov, Георгий Георгиев Граховски, Georgi Georgiev Grahovski, Н А Костов, N A Kostov, “О многокомпонентных уравнениях типа нелинейного уравнения Шредингера на симметричных пространствах и их редукциях”, ТМФ, 144, no. 2, 2005, 313
- Rhys Bury, Alexander V. Mikhailov, Jing Ping Wang, “Wave fronts and cascades of soliton interactions in the periodic two dimensional Volterra system”, Physica D: Nonlinear Phenomena, 347, 2017, 21
- Oleksiy O. Vakhnenko, “Four-component integrable systems inspired by the Toda and the Davydov–Kyslukha models”, Wave Motion, 88, 2019, 1
- A. E. Mironov, “Spectral data for Hamiltonian-minimal lagrangian tori in ℂP2”, Proc. Steklov Inst. Math., 263, no. 1, 2008, 112
- V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “The $\text{m}$KdV-type equations related to $A_5^{(1)}$ and $A_5^{(2)}$ Kac–Moody algebras”, Theor Math Phys, 207, no. 2, 2021, 604
- V. S. Gerdjikov, G. G. Grahovski, A. A. Stefanov, “Real Hamiltonian forms of affine Toda field theories: Spectral aspects”, Theor Math Phys, 212, no. 2, 2022, 1053
- Vadim A. Brazhnikov, “Wave function renormalization constants and one-particle form factors in D(1) Toda field theories”, Nuclear Physics B, 542, no. 3, 1999, 694