43 citations to 10.1088/0305-4470/33/41/310 (Crossref Cited-By Service)
  1. C. Daskaloyannis, Y. Tanoudis, “Quantum superintegrable systems with quadratic integrals on a two dimensional manifold”, Journal of Mathematical Physics, 48, no. 7, 2007, 072108  crossref
  2. Willard Miller, Sarah Post, Pavel Winternitz, “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46, no. 42, 2013, 423001  crossref
  3. Ian Marquette, “Construction of classical superintegrable systems with higher order integrals of motion from ladder operators”, Journal of Mathematical Physics, 51, no. 7, 2010, 072903  crossref
  4. A M Escobar-Ruiz, P Winternitz, İ Yurduşen, “GeneralNth-order superintegrable systems separating in polar coordinates”, J. Phys. A: Math. Theor., 51, no. 40, 2018, 40LT01  crossref
  5. Antonios Mitsopoulos, Michael Tsamparlis, “Cubic first integrals of autonomous dynamical systems in E2 by an algorithmic approach”, Journal of Mathematical Physics, 64, no. 1, 2023, 012701  crossref
  6. José F Cariñena, Manuel F Rañada, Mariano Santander, “Superintegrability on the three-dimensional spaces with curvature. Oscillator-related and Kepler-related systems on the sphere S 3 and on the hyperbolic space H 3”, J. Phys. A: Math. Theor., 54, no. 36, 2021, 365201  crossref
  7. A. V. Tsyganov, “Addition theorems and superintegrable systems”, Dokl. Math., 78, no. 2, 2008, 759  crossref
  8. P. Winternitz, “Superintegrability with second- and third-order integrals of motion”, Phys. Atom. Nuclei, 72, no. 5, 2009, 875  crossref
  9. Cezary Gonera, “Isochronic potentials and new family of superintegrable systems”, J. Phys. A: Math. Gen., 37, no. 13, 2004, 4085  crossref
  10. Fakir Chand, “Fourth-order constants of motion for time independent classical and quantum systems in three dimensions”, Can. J. Phys., 88, no. 3, 2010, 165  crossref
1
2
3
4
5
Next