- Michael Negnevitsky, Nikita Tomin, Victor Kurbatsky, Daniil Panasetsky, Alexey Zhukov, Christian Rehtanz, 2015 IEEE Eindhoven PowerTech, 2015, 1
- Peyman Razmi, Mahdi Ghaemi Asl, Application of Machine Learning and Deep Learning Methods to Power System Problems, 2021, 357
- Rishav Baishya, Rajib Sarkar, “A neural network-based approach for prediction of PGA and significant duration parameters in the Uttarakhand region of India”, Environ Earth Sci, 81, no. 13, 2022, 342
- Walter M. Villa-Acevedo, Jesús M. López-Lezama, Delia G. Colomé, Jaime Cepeda, “Long-term voltage stability monitoring of power system areas using a kernel extreme learning machine approach”, Alexandria Engineering Journal, 61, no. 2, 2022, 1353
- Milad Dalali, Hossein Kazemi Karegar, “Voltage instability prediction based on reactive power reserve of generating units and zone selection”, IET Generation, Transmission & Distribution, 13, no. 8, 2019, 1432
- Yu Zhang, Xiaohui Song, Yong Li, Zilong Zeng, Chenchen Yong, Denis Sidorov, Xia Lv, “Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility”, Energies, 13, no. 22, 2020, 5922
- N. Tomin, A. Zhukov, V. Kurbatsky, D. Sidorov, M. Negnevitsky, 2017 IEEE Manchester PowerTech, 2017, 1
- Walter M. Villa-Acevedo, Jesús M. López-Lezama, Delia G. Colomé, “Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach”, Energies, 13, no. 4, 2020, 857
- Sen Wang, Yonghui Sun, Yan Zhou, Rabea Jamil Mahfoud, Dongchen Hou, “A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM”, Energies, 13, no. 1, 2019, 87