9 citations to 10.1109/IYCE.2015.7180828 (Crossref Cited-By Service)
  1. Michael Negnevitsky, Nikita Tomin, Victor Kurbatsky, Daniil Panasetsky, Alexey Zhukov, Christian Rehtanz, 2015 IEEE Eindhoven PowerTech, 2015, 1  crossref
  2. Peyman Razmi, Mahdi Ghaemi Asl, Application of Machine Learning and Deep Learning Methods to Power System Problems, 2021, 357  crossref
  3. Rishav Baishya, Rajib Sarkar, “A neural network-based approach for prediction of PGA and significant duration parameters in the Uttarakhand region of India”, Environ Earth Sci, 81, no. 13, 2022, 342  crossref
  4. Walter M. Villa-Acevedo, Jesús M. López-Lezama, Delia G. Colomé, Jaime Cepeda, “Long-term voltage stability monitoring of power system areas using a kernel extreme learning machine approach”, Alexandria Engineering Journal, 61, no. 2, 2022, 1353  crossref
  5. Milad Dalali, Hossein Kazemi Karegar, “Voltage instability prediction based on reactive power reserve of generating units and zone selection”, IET Generation, Transmission & Distribution, 13, no. 8, 2019, 1432  crossref
  6. Yu Zhang, Xiaohui Song, Yong Li, Zilong Zeng, Chenchen Yong, Denis Sidorov, Xia Lv, “Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility”, Energies, 13, no. 22, 2020, 5922  crossref
  7. N. Tomin, A. Zhukov, V. Kurbatsky, D. Sidorov, M. Negnevitsky, 2017 IEEE Manchester PowerTech, 2017, 1  crossref
  8. Walter M. Villa-Acevedo, Jesús M. López-Lezama, Delia G. Colomé, “Voltage Stability Margin Index Estimation Using a Hybrid Kernel Extreme Learning Machine Approach”, Energies, 13, no. 4, 2020, 857  crossref
  9. Sen Wang, Yonghui Sun, Yan Zhou, Rabea Jamil Mahfoud, Dongchen Hou, “A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM”, Energies, 13, no. 1, 2019, 87  crossref