- R G Novikov, “Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential”, Inverse Problems, 21, no. 1, 2005, 257
- Aleksey Dmitrievich Agal'tsov, Roman Gennadievich Novikov, “Примеры решения обратной задачи рассеяния и уравнений иерархии Веселова-Новикова по данным рассеяния точечных потенциалов”, Успехи математических наук, 74, no. 3(447), 2019, 3
- Petr Georgievich Grinevich, Roman Gennadievich Novikov, “Спектральное неравенство для уравнения Шрeдингера с многоточечным потенциалом”, Успехи математических наук, 77, no. 6(468), 2022, 69
- R.G. Novikov, “Absence of exponentially localized solitons for the Novikov–Veselov equation at positive energy”, Physics Letters A, 375, no. 9, 2011, 1233
- P.G. Grinevich, R.G. Novikov, “Moutard transform approach to generalized analytic functions with contour poles”, Bulletin des Sciences Mathématiques, 140, no. 6, 2016, 638
- A V Kazeykina, R G Novikov, “Absence of exponentially localized solitons for the Novikov–Veselov equation at negative energy”, Nonlinearity, 24, no. 6, 2011, 1821
- Khosrow Chadan, Pierre C. Sabatier, Scattering, 2002, 726
- M. Lassas, J.L. Mueller, S. Siltanen, A. Stahel, “The Novikov–Veselov equation and the inverse scattering method, Part I: Analysis”, Physica D: Nonlinear Phenomena, 241, no. 16, 2012, 1322
- Petr Georgievich Grinevich, Roman Gennadievich Novikov, “Spectral inequality for Schrödinger's equation with multipoint potential”, Russian Math. Surveys, 77, no. 6, 2022, 1021
- A. D. Agaltsov, R. G. Novikov, “Riemann–Hilbert problem approach for two-dimensional flow inverse scattering”, Journal of Mathematical Physics, 55, no. 10, 2014, 103502