- Jared M. Maruskin, Anthony M. Bloch, “The Boltzmann–Hamel equations for the optimal control of mechanical systems with nonholonomic constraints”, Intl J Robust & Nonlinear, 21, no. 4, 2011, 373
- P. Gaspard, D. Alonso, I. Burghardt, 90, Advances in Chemical Physics, 1995, 105
- Alessandra Celletti, Luigi Chierchia, “Quasi-Periodic Attractors in Celestial Mechanics”, Arch Rational Mech Anal, 191, no. 2, 2009, 311
- Bernold Fiedler, Arnd Scheel, Trends in Nonlinear Analysis, 2003, 23
- Efi Meletlidou, New Developments in the Dynamics of Planetary Systems, 2001, 161
- Keegan J. Moore, Jonathan Bunyan, Sameh Tawfick, Oleg V. Gendelman, Shuangbao Li, Michael Leamy, Alexander F. Vakakis, “Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy”, Phys. Rev. E, 97, no. 1, 2018, 012219
- Y. S. Lee, A. F. Vakakis, D. M. McFarland, L. A. Bergman, “A global-local approach to nonlinear system identification: A review”, Struct. Control Health Monit., 17, no. 7, 2010, 742
- Yansheng Zhong, Riguang Wu, “The long-time behavior of solitary waves for the weakly damped KdV equation”, Bound Value Probl, 2023, no. 1, 2023, 5
- Fernando Jiménez, David Martín de Diego, “Continuous and discrete approaches to vakonomic mechanics”, RACSAM, 106, no. 1, 2012, 75
- J. Cortés, M. de León, D. Martín de Diego, S. Martínez, “Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions”, SIAM J. Control Optim., 41, no. 5, 2002, 1389