- Andrey A. Agrachev, Andrey V. Sarychev, “Controllability of 2D Euler and Navier-Stokes Equations by Degenerate Forcing”, Commun. Math. Phys., 265, no. 3, 2006, 673
- Andrei A. Agrachev, 5, Geometric Control Theory and Sub-Riemannian Geometry, 2014, 1
- Armen Shirikyan, “Controllability of nonlinear PDE’s: Agrachev–Sarychev approach”, Journées équations aux dérivées partielles, 2010, 1
- Behzad Azmi, Karl Kunisch, Sérgio S. Rodrigues, “Stabilization of nonautonomous parabolic equations by a single moving actuator”, DCDS, 41, no. 12, 2021, 5789
- Karine Beauchard, Camille Laurent, “Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control”, Journal de Mathématiques Pures et Appliquées, 94, no. 5, 2010, 520
- Marco Lepri, Davide Bacciu, Cosimo Della Santina, “Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems”, IEEE Control Syst. Lett., 8, 2024, 133
- Martin Hairer, Andrew J Majda, “A simple framework to justify linear response theory”, Nonlinearity, 23, no. 4, 2010, 909
- María Barbero-Liñán, Mario Sigalotti, “New high order sufficient conditions for configuration tracking”, Automatica, 62, 2015, 222
- Jean-Michel Coron, Sergio Guerrero, “Local null controllability of the two-dimensional Navier–Stokes system in the torus with a control force having a vanishing component”, Journal de Mathématiques Pures et Appliquées, 92, no. 5, 2009, 528
- Martin Hairer, Jonathan C. Mattingly, “Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations”, Ann. Probab., 36, no. 6, 2008