- S. A. Stasyuk, “Best m-term trigonometric approximation for the classes $ B_{p,{{\uptheta }}}^r $ of functions of low smoothness”, Ukr Math J, 62, no. 1, 2010, 114
- José L. Ansorena, Glenier Bello, Przemysław Wojtaszczyk, “Lorentz spaces and embeddings induced by almost greedy bases in superreflexive Banach spaces”, Isr. J. Math., 255, no. 2, 2023, 621
- Tao Qian, “Two‐dimensional adaptive Fourier decomposition”, Math Methods in App Sciences, 39, no. 10, 2016, 2431
- Shuang Li, Tao Qian, 2011 Second International Conference on Mechanic Automation and Control Engineering, 2011, 1424
- Morten Nielsen, “An example of an almost greedy uniformly bounded orthonormal basis for Lp(0,1)”, Journal of Approximation Theory, 149, no. 2, 2007, 188
- A. S. Romanyuk, “Approximation of classes $B_{p,\theta }^r$ of periodic functions of one and several variables”, Math Notes, 87, no. 3-4, 2010, 403
- S.J. Dilworth, Denka Kutzarova, Th. Schlumprecht, P. Wojtaszczyk, “Weak thresholding greedy algorithms in Banach spaces”, Journal of Functional Analysis, 263, no. 12, 2012, 3900
- M. Berasategui, P. M. Berná, S. Lassalle, “Strong Partially Greedy Bases and Lebesgue-Type Inequalities”, Constr Approx, 54, no. 3, 2021, 507
- Miguel Berasategui, Silvia Lassalle, “Weak Greedy Algorithms and the Equivalence Between Semi-greedy and Almost Greedy Markushevich Bases”, J Fourier Anal Appl, 29, no. 2, 2023, 20
- Fernando Albiac, José L. Ansorena, Pablo M. Berná, “New parameters and Lebesgue-type estimates in greedy approximation”, Forum of Mathematics, Sigma, 10, 2022, e113