- Marcus Rosenberg, Jari Taskinen, “Some aspects of the Floquet theory for the heat equation in a periodic domain”, J. Evol. Equ., 24, no. 2, 2024, 23
- D. Gómez, S. A. Nazarov, M. E. Pérez, “Homogenization of Winkler–Steklov spectral conditions in three-dimensional linear elasticity”, Z. Angew. Math. Phys., 69, no. 2, 2018, 35
- S. A. Nazarov, “Gap Opening Around a Given Point of the Spectrum of a Cylindrical Waveguide by Means of a Gentle Periodic Perturbation of Walls”, J Math Sci, 206, no. 3, 2015, 288
- Andrii Khrabustovskyi, “Opening up and control of spectral gaps of the Laplacian in periodic domains”, Journal of Mathematical Physics, 55, no. 12, 2014, 121502
- D. Gómez, S. A. Nazarov, R. Orive-Illera, M.-E. Pérez-Martínez, “Remark on Justification of Asymptotics of Spectra of Cylindrical Waveguides with Periodic Singular Perturbations of Boundary and Coefficients”, J Math Sci, 257, no. 5, 2021, 597
- S. A. Nazarov, J. Taskinen, “Structure of the Spectrum of a Periodic Family of Identical Cells Connected by Converging Apertures”, J Math Sci, 194, no. 1, 2013, 72
- Delfina Gómez, Sergei A. Nazarov, Rafael Orive-Illera, María-Eugenia Pérez-Martínez, “Spectral gaps in a double-periodic perforated Neumann waveguide”, ASY, 131, no. 3-4, 2023, 385
- S. A. Nazarov, K. Ruotsalainen, J. Taskinen, “Spectral gaps in the dirichlet and neumann problems on the plane perforated by a doubleperiodic family of circular holes”, J Math Sci, 181, no. 2, 2012, 164
- S. A. Nazarov, “Eigenmodes of a thin elastic layer between periodic rigid profiles”, Comput. Math. and Math. Phys., 55, no. 10, 2015, 1684